

Beam Dynamics Design of CIADS linac

Shuhui Liu

On behalf of Linac Center Institute of Modern Physics, CAS

- General introduction of CIADS
- Room temperature section
- Superconducting section
- High energy beam transport line
- Summary

▶ General introduction of CIADS

- Room temperature section
- Superconducting section
- High energy beam transport line
- Summary

General introduction of CIADS

China Initiative Accelerator Driven System (CIADS)

- Approved in Dec. 2015, CD0
- **Leading institute: IMP**
- **Budget: >1.8B CNY (Gov. and Corp.)**
- **Location: Huizhou, Guangdong Prov.**
- **Contribution Partners:**

cW mode

~600 MeV

10 mA

6MW

IHEP, CASHIPS, CIAE, CGN Proton LINAC:

Frequency	162.5	MHz
Beam current	10	mA
ECRIS + LEBT	0.035	MeV
RFQ	2.1	MeV
SC section	600	MeV
Total length	~270	m

- Introduction of CIADS
- **▶** Room temperature section
- Superconducting section
- High energy beam transport line
- Summary

IMP

Special functions of RT front end for CIADS

◆Low-Energy Beam Transport (LEBT)

- ① Scrape 20% or more particles to get a smaller transverse emittance
- 2 Remove ²H⁺ and ³H⁺ particles to avoid them losing in RFQ cavities
- 3 Transport and match beam to RFQ
- **◆**Radio-Frequency Quadrupole (RFQ)
- **Optimize** RFQ design with a smaller longitudinal emittance (RMS & total longitudinal emittance)
- **◆**Medium-Energy Beam Transport (MEBT)
- 1 Measure beam parameters
- 2 Transport and match beam to RFQ

LEBT

scrap the outer particles with large size and large divergence angle

- Good transverse beam quality through "spot-source" scraping
- Remove ²H⁺ and ³H⁺ by bending magnet in case of losing in RFQ

lons	H ⁺	
Energy (keV)	35	
Beam current (mA)	15	
Emittance rms_norm. (pi.mm.mrad)	0.186	

RFQ

Parameters	RFQ for injectorII	RFQ2
Inter-vane voltage(kV)	65	70
KP factor	1.2	1.32
Min.aperture(mm)	3.2	3.33
Modulation	1-2.38	1-2.19
Syn.Phase(deg)	-90 ~ -22 . 7	-90 ~ -25
Long.Emittance_rms(keV ns)	0.0534	0.0506
Long.Emittance_max(keV ns)	2.4267	1.9156
Lcavity/Lelectrode(cm)	420.8/419.2	450
Transmission(%)	99.6	99.4
Cell number	192	247

RFQ

- Introduction of CIADS
- Room temperature section
- Superconducting section
- High energy beam transport line
- Summary

Superconducting section

General parameters

ESS Costing Report 2012

Design Features

- 2.5 GeV, 50mA, 2.86 mS, 14 Hz (pulse 4%)
- 98% superconducting
- Superconducting linac at 352 & 704 MHz

Cavity + Power = 60%

FDSL 2012 10 02

David McGinnis, ESS Design Options, 4 March 2013

'General parameters

Cavity Family					
Cavity Type	HWR	Spoke	Ellip		
Frequency(MHz)	162.5	325	650		
Gap Number	2	3	5		
Epeak(MV/m)	25/32	32	35		

Variable:

Geometric beta

Algorithm:

Particle Swarm Optimization

Constraints:

Input energy: 2.1 MeV

Output energy: 1.5 GeV

TTF continuous

Energy gain continuous

Objective:

Cavity number
Normalized power

General parameters

Lattice design

Multiparticle simulation

Error analysis

- TraceWin code is used for error analysis;
- End to end simulation including MEBT and SC section using RFQ simulated output distribution;
- 3d cavity fields are used in the multi-particle simulations;
- 100seeds are generated randomly for the error analysis

Error type	Static (buncher/cavity)	Dynamic (buncher/cavity)	Static (Q/solenoid)	Dynamic (Q/solenoid)
δx (mm)	0.1/1	0.002/0.01	0.1/1	0.002/0.01
δy (mm)	0.1/1	0.002/0.01	0.1/1	0.002/0.01
Rx (mrad)	2	0.02	2	0.02
Ry (mrad)	2	0.02	2	0.02
Rz (mrad)	×	×	2	0.02
δg (%)	0.5	0.25	0.5	0.05
δφ (°)	0.5	0.05	×	×
δz (mm)	0	0	0	0

Error analysis

- Introduction of CIADS
- Room temperature section
- Superconducting section
- High energy beam transport line
- Summary

High energy beam transport line

Design strategy:

- Bend section is used to bend beam and meet the requirements for target.
 - Collimate beam to avoid beam losses at the differential hole and other parts of the HEBT.
- Vacuum differential sectioin is used to complete vacuum transition
- Uniformity is done by the redundancy scanning magnets. Wobbler scanning is considered.

High energy beam transport line

- Introduction of CIADS
- Room temperature section
- Superconducting section
- High energy beam transport line
- Summary

- The beam dynamics design of CIADS linac are presented, and the most concern is beam loss control
- The error analysis integrated with MEBT and SC section are presented
- The preliminary design for HEBT are presented, and the beam power uniformity is 97.3% on target
- More detail works need to be done

