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Abstract

Space-charge compensation provided by the accumula-

tion of particles of opposing charge in the beam potential

is an important effect occuring in magnetostatic low energy

beam transport sections of high-intensity accelerators. An

improved understanding of its effects might provide valuable

input for the design of these beam lines.

One approach to model the compensation process are

Particle-in-Cell (PIC) simulations including residual gas

ionisation. In simulations of a drifting proton beam, using

the PIC code bender [1], some features of thermal equi-

librium for the compensation electrons were found. This

makes it possible to predict their spatial distribution using

the Poisson-Boltzmann equation and thus the influence on

beam transport.

In this contribution, we will provide a comparison be-

tween the PIC simulations and the model as well as some

ideas concerning the source of the (partial) thermalization.

SIMULATION OF A DRIFT SECTION

The drift of a 120 keV, 100 mA proton beam over 50 cm

through a system enclosed by repeller electrodes on −1.5 kV

and filled with Argon gas at 1 × 10−5 mbar was simulated.

The code bender, the simulation model, the reasons for

the choice of this system as well as the behaviour during

compensation build-up were presented in previous contribu-

tions [1, 2].

Figure 1 depicts the charge densities of all simulated

species – the beam protons, the residual gas ions (Ar1+)

and the compensation electrons – in the steady-state of the

simulation. The globally averaged compensation outside

of the area affected by the repellers reaches ηpart ≈ 86.2 %.

Beyond the mean effect of the compensation, a shift in the

focus of the beam, which is also easily explained by a scaling

of the current, some additional effects are present.

In the focus, the beam becomes hollow. As can be ob-

served in the total charge density, the beam edge is not well

compensated, especially in the focus point but also else-

where in the system. Some electrons have enough energy

to be able to form an area of negative charge density close

to the beam edge. In most parts of the system, the residual

gas ions are immediately expelled by the radial electric field.

However, within the focus, the Argon ions accumulate to a

density of approximately 300 µC m−3 – surprising, since the

radial electric fields should be largest in the focus.

Figure 2 shows the distribution of total particles energies

H in arbitrarily selected places throughout the volume. For

∗ noll@iap.uni-frankfurt.de

 5

 10

 15

 20

r 
[m

m
]

C
h
a
rg

e
 d

e
n
s
it
y
 [
µ
C

/m
3
]

−200

0

200

400

600

800

1000

1200ρp
+

 5

 10

 15

r 
[m

m
]

−ρe
−

 5

 10

 15

r 
[m

m
]

5 × ρAr
+

 5

 10

 15

0 0.1 0.2 0.3 0.4 0.5

r 
[m

m
]

z [m]

ρp
+ + ρe

− + ρAr
+

Figure 1: Charge densities for the different particle species

in the simulation: beam protons, compensation electrons,

residual gas ions and the netto charge density.
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Figure 2: Distribution of total particle energy H (kinetic

plus potential energy) at various arbitrarily chosen positions.

For H < 0, the curves follow the dashed exponential curves.

Positive H are underpopulated due to particle loss.

H < 0, these follow an exponential dependence

H (r, v) = H0 exp(−H/ (kbT ))

= H0 exp
(

−p2/ (2mekbT ) + eϕ(r) / (kbT )
)

. (1)

For H ≥ 0, particles are not confined and are gradually lost,

leading to an underpopulation. The Boltzmann distribu-
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tion in Eq. (1) also predicts Gaussian velocity distributions.

These were also observed in the simulation. An example, re-

solved radially, taken from the center of the system is shown

in Fig. 3. Towards larger radii, their width decreases and the

curves look more "cut-off", probably due to particle losses.
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Figure 3: Electron velocities in a slice around z = 25 cm

resolved radially and normalized independently. The small

numbers in the caption give the number of macroparticles

contained in each ring.

Therefore, the results show some features of a system in

thermal equilibrium. But neither is there equipartitioning –

the temperatures differ between the transversal and the lon-

gitudinal plane – nor are the temperatures constant spatially.

Nevertheless, the assumption that the electrons distribute

according to Eq. (1) allows us to understand the features

previously found in Fig. 1.

POISSON-BOLTZMANN EQUATION

When the electrons are known to be Boltzmann dis-

tributed, their distribution in space can be found by solving

∇2ϕ(r) = − 1

ǫ0

(

ρbeam(r) + ρcomp exp

(

eϕ(r)

kbT

))

.

By scaling the coordinates by the Debye length λd =
√

ǫ0kbT/(ne2) and the potential by the temperature, φ̃ =

eφ/ (kbT ), [3] we get

∇̃2ϕ̃ = fbeam(r̃) − µ exp(ϕ̃) , (2)

where fbeam(r̃) = ρbeam(r̃) /(ne) is the beam profile. λd
and the compensation degree incorporated in

µ = ηpart

∫

exp(ϕ̃(r)) dV

(∫

fbeam(r) dV

)−1

,

are the only free parameters of the model. Equation (2) can

be solved by introducing a parameter t,

dϕ

dt
= ∇̃2ϕ̃ − fbeam(r̃) + µ exp ϕ̃(r̃)

and applying the Crank-Nicolson method [4, p. 1045] for

the linear terms on the right hand side and the forward Euler

method for the exponential term.
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Figure 4: Electron density ne relative to the beam density n0,

remaining potential φ and electric field, when electrons at

temperature T confined in a 100 mA, 120 keV proton beam

are treated using Eq. (2). Compensation degree is 90 %.

Figure 4 displays the electron density, potential and elec-

tric field found from the solution of Eq. (2) for a 100 mA,

120 keV proton beam with 1 cm radius, compensated to

ηpart = 90 % by thermal electrons. The algorithm was

also included into the beam transport code tralitrala as a

space-charge solver to be able to look at the influence of

the non-linear fields produced by the electrons. Figure 5

shows the emittance growth observed in a 50 cm drift of an

initially parallel and homogeneous 50 mA, 120 keV proton

beam (ǫ rms = 25 mm mrad, α = 0, β = 1 m).

For low temperatures, the electrons are concentrated

around the beam axis and are able to fully compensate the

beam within some radius. The charge density effectively

becomes that of a hollow beam, i.e. the electric field is zero

in the core of the beam and rises quadratically at the edge.

Such a situation does not lead to emittance growth, when the

beam is either close to fully or not compensated. However,

at intermediate values of ηpart, where the quadratic electric

field affects a large part of the beam, a growth in emittance

up to 15 % can be observed.

For higher temperatures, the radial electron density begins

to decrease earlier, leading to some electric field over a wide

part of the beam. This produces some emittance growth,

but not as large as for very low temperatures. Additionally

more and more electrons are located outside the beam radius,

leading to the negative charge densities also observed in the

bender simulation.

At very large temperatures, the electron distribution tends

towards a homogeneous background, providing nearly no

effective compensation but also not leading to any emittance

growth. Such a situation is unlikely to occur, since electron

losses on the beam pipe would become too large.
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Figure 5: Emittance growth in a 50 cm beam transport of a

homogeneous beam, when electrons at given temperature

and compensation degree are incorporated in the simulation.

Source of the emittance growth are the non-linear fields

observed in Fig. 4.
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Figure 6: Same parameters as Fig. 5, but for a beam with a

Gaussian distribution.

Simulations with rms equivalent parameters were made

for a beam with a Gaussian distribution in phase-space. Fig-

ure 6 shows the calculated emittance growth. The largest

growth is observed for an uncompensated beam, which is

a result of redistribution due to non-linear field energy. In

the presence of a small number of electrons, the growth is

much reduced. In Fig. 6 for example, ∆ǫ rms/ǫ rms < 10 %,

for ηpart > 40 % over the length of the drift. Around

ηpart = 60 %, T = 8 eV, the electrons distribute in a way

that the resulting electric field is approximately linear. This

leads to the surprising minimum in the emittance growth.

Figure 7 shows the charge density from a similar calcula-

tion of the system previously simulated using bender. The

properties T (z) and ηpart(z) of the electrons were extracted

from the full simulation, but their radial distribution calcu-

lated from Eq. (2).
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Figure 7: Total charge density in a 2d simulation of the same

system as in Fig. 1, when electric fields are calculated from

Eq. (2) using the same temperature T (z) and longitudinal

compensation degree distribution ηpart(z) extracted from the

full simulation.

Both the formation of the negative charge density beyond

the beam edge as well as the formation of a hollow beam is

present. The latter can be identified as a result of the sharp

increase of the electric field at the edge of the beam. This

reduces the angle of convergence for the particles leading

to an increase in density after some drift. Beyond the focus

point, these areas are still observed continuing towards the

axis.

The Poisson-Boltzmann model does not include the sec-

ondary ions. This makes it possible for a negative charge

density to form inside the area around z = 30 cm close to the

beam axis. In this area, in the bender simulation, residual

gas ions are not accelerated from the system anymore but

confined instead.

Therefore, all features previously identified in the PIC

simulation can be explained by the presence of Boltzmann

distributed electrons. Hence, the question of its origin be-

comes important.

STOCHASTICAL HEATING IN A TEST

SYSTEM

In the PIC simulation, we observed that the energies of the

electrons fluctuate randomly, over a scale of several electron-

volts in short-term, but on average increasing continously.

When their kinetic energy increases to values larger than the

potential, these electrons are lost. Due to this, we suspected

that energy is not conserved by the simulation.

To test this hypothesis, a test system was generated by solv-

ing Eq. (2) in spherical coordinates for a confining potential

of Gaussian shape with σ = 1 cm. The resulting charge

density is displayed in Fig. 8. To avoid particle loss, the

system parameters were chosen so that the confined particles

are well removed from the boundary of the system, taken

to be at R = 10 cm. Particle distributions with a thermal

energy distribution and the calculated densities profile were
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then loaded into bender and simulated for up to 1.5 ms (30

million steps) in some cases.
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Figure 8: Electron charge density in a Gaussian shaped

confining potential for various temperatures.

The density profile should remain stable by design. At a

high number of particles, this was also observed. For low-

resolution simulations however, a slow increase in the size

of the cloud is present. The origin of this expansion is the

linear increase in average particle energy shown in Fig. 9.
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Figure 9: Energy increase in the test system (see Fig. 8) due

to stochastical heating.

The rate of energy increase mainly depends on the num-

ber of macroparticles used and to a lesser degree on the

resolution of the simulation grid. A range of parameters

were simulated and the corresponding energy increase rate

displayed in Fig. 10.

A possible explanation for the heating can be found in [5, p.

314-318]. Repeating their argument, if we assume that all

errors in the simulation contribute to a random error δE

in the electric field that has zero time average δE = 0 but

a variance δE2 , 0, then the kinetic energy change in the

simulation between two timesteps is

∆T = Ti+1 − Ti =
1

2
m

(

(vi + δv)2 − v2
i

)

(3)

=

1

2
m

(

2viδv + δv2
)

=

1

2

q2

m
δE2δt2. (4)
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Figure 10: Observed heating rate for different numbers of

macroparticles and grid spacings ∆. Dashed lines indicate

O(N−1) behaviour.

Equation 4 therefore predicts a constant increase in energy,

which is what is observed. For a low number of macroparti-

cles, we can assume the error to be statistical and therefore

|δE | ∼ 1/
√

N . Then, the heating rate is inversely propor-

tional to the number of macroparticles N . This is observed

in Fig. 10. Depending on the grid resolution at some point,

some other (unidentified) process becomes relevant.

Therefore, we can assume a numerical heating to be

present in the simulation, with a heating rate dependent

on the parameters of the simulation.

In hindsight, the choice of system was not ideal, because a

dependence on plasma parameters such as the Debye length

is hard to find given the small extent of the system.

NUMERICAL INFLUENCES IN THE

DRIFT SIMULATION

Figure 11 shows the temperatures found in the drift system,

when the number of beam macroparticles inserted per step

(and therefore the charge per macroparticle) is changed. As

the electron temperature decreases, more electrons remain

closer to the beam axis and the amount of negative charge

outside the beam is lower. This allows more electrons to

accumulate. Therefore, the decrease in temperature is linked

to an increase in total compensation degree of the system.

This can be seen in Fig. 11.

We assume that the observed dependence on the number

of macroparticles is a result of the stochastical heating previ-

ously observed in the demonstration system. Due to particle

losses, instead of a continous increase of system energy, an

equilibrium forms. The losses could then also be responsible

for the appearance of the Boltzmann energy distribution.

When the electric field of the beam is not recalculated

in every step from beam particles but fixed to a field taken

from a previous simulation, the observed (transversal) tem-

peratures at the center of the system shrink from 27 eV to

11.8 eV. When residual gas ions are also excluded, the re-

sults is 8.3 eV. Therefore, a significant contribution of the

heating comes from the beam particles.
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Figure 11: Dependence of the observed electron temper-

atures and the compensation degree on the number of

macroparticles used to represent the particle species in the

bender simulation.

To make the results of this kind of simulation physical, the

numerical heating needs to be removed by some means. We

then expect the compensation degree to reach values close

to 100 %.

Then, physical heating processes such as Coulomb col-

lisions between beam particles and the compensation elec-

trons can be introduced. An estimation for the heating from

these collision, given by Doelling [6, p. 19],

P =
e2

4πǫ2
0
me

nbq2
b

vb

ln(Λ)

[
erf

(

vb

vt

)

− 2
√
π

(

1 +
me

mb

)

vb

vt

exp*,−
(

vb

vt

)2+-
]
,

vt =

√
2kbT/me, indicates that for exemplary parameters

taken from the simulation (T = 25 eV), the heating rate

P = 19.5 keV s−1 is in the same order of magnitude of the

numerical heating described in the previous section. There-

fore, final results may, in some ways, not deviate much from

those with the unphysical heating.

CONCLUSION

Simulations of space charge compensation in a short drift

section were performed using the newly-developed Particle-

in-Cell code bender. Beyond the reduction in space-charge

forces, several features such as the formation of a hollow

beam or the accumulation of residual gas ions in the focus

were found. These were linked to the presence of a Boltz-

mann energy distribution for the electrons. Results from

simulation using different simulation parameters and from

a numerical experiment indicate that the observed energy

distributions are of numerical origin.
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