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Abstract
The existence of structural space charge resonant effects

in otherwise linear periodic focusing systems is well-known,
but referred to in a variety of languages and contexts. We
show here that for short bunched beams a “classification” in
two major groups is possible, e.g. parametric resonances or
instabilities on the one hand and single particle type space
charge resonances on the other hand. The primary feature
of distinction is that for the former the driving space charge
force initially exists on the noise level (rms or higher order
mismatch) only and gets amplified parametrically, hence an
entirely coherent response; for the latter the driving space
charge multipole is part of the initial density profile and
the coherent response is weak. In the extreme limit of KV
beams only parametric resonances (instabilities) exist, and
in principle in all orders. For waterbag or Gaussian distribu-
tions we find half-integer parametric resonances only up to
fourth order, but evidence for single particle resonances in
all orders up to tenth have been identified.

INTRODUCTION
With advancing demands on the control of space charge

effects for beam dynamics of both linear and circular high
intensity accelerators the appearance of purely space charge
driven resonances merits careful consideration. The present
study considers this space charge case in an otherwise linear
periodic focusing lattice. It is based on a recent analysis
of the so-called ninety degree and other structural space
charge driven stopbands, where it was found that a distinction
between single particle type resonant effects and instabilities
- here also called parametric resonances - is fundamental [1].

The analytical basis for resonant space charge phenomena
in periodic focusing was given by a perturbational Vlasov
analysis of structural instabilities of different order for a
Kapchinskij-Vladimirskij (KV) distribution of a coasting
beam [2]. Our present examples show that this earlier work
- though derived for the special case of a 2d KV beam, and
under the constraints of a perturbation theory, is still highly
relevant and a key to differentiating types of resonant be-
haviour.
Experimental investigation of this stop-band was under-

taken only in 2009, in a dedicated experiment at the UNI-
LAC high intensity heavy ion linear accelerator [3]. This
experiment gave evidence of a fourth order resonance as sug-
gested already in an earlier simulation study for a periodic
lattice [4], and no indication of a simultaneously occurring
envelope instability was found. However, a recent study has
shown that the matter is more complex and not independent
∗ i.hofmann@gsi.de

of the length of the system and the initial mismatch [1]. In
particular, the claim of Ref. [5] that the envelope mode is sup-
pressed by the appearance of a fourth order resonance is not
supported by our findings. Likewise, we cannot confirm a
more recent interpretation that the envelope mode is induced
my a mismatch induced by the fourth order resonance [6],
which ignores the independence of these modes.

Note that our examples are related to short bunches, where
the synchrotron period is not very different from betatron
periods; in circular accelerators the synchrotron period is
usually very long, which requires special consideration due
to possibly different mixing effects. The suggested typology
is, however, still applicable.
Resonances driven by space charge in combination with

emittance exchange - so-called non-equipartitioned beams [7,
8] - are not part of the present study. They are driven by beam
anisotropy rather than the periodic focusing, which leads to
a related typology including single particle resonances and
anisotropy driven instabilities.

RESONANT PARTICLES AND
COHERENT MODES

Single Particle Resonances
The commonly considered resonances in accelerators are

based on external forces periodically acting on particles.
The origin of these forces usually are systematic and error
multipoles of magnets, which provide the driving terms for
the resonance.
In a linear lattice with non-uniform space charge den-

sity similar driving terms can be given, if one expands the
space charge potential in so-called space charge “pseudo-
multipoles”, which particles cannot distinguish from exter-
nal forces provided that the space charge terms are well-
matched and follow the lattice periodicity.
Resonances in such well-matched beams will be called

“single-particle” or “incoherent resonances” reflecting the
fact that coherent motion does not affect the resonance con-
dition. Using linac notation the corresponding resonance
condition in the x − x ′-plane (similar in the other planes)
can be written as

mkx = 3600, (1)

with kx ≡ k0,x−∆kx,inc the phase advancewith space charge,
and k0,x without. Note that applied to circular accelerators,
these quantities would have to relate to a periodic structure
cell. Here, we assume ∆kx,inc (> 0) is an rms average of
incoherent tune shifts and ignore possible spreads depending
on amplitudes.

THPM1X01 Proceedings of HB2016, Malmö, Sweden

ISBN 978-3-95450-178-6

486C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Beam Dynamics in Rings



Parametric Resonances
On the other hand, in beams also parametric resonances

exist, which are not due to external forces from magnets or
space charge, but a system parameter is periodically modu-
lated and drives the resonance.

An example of parametric resonance in accelerators is the
single-particle “Mathieu stopband”, which prevents single
particle transport in periodic focusing and leads to a runaway
effect, if the phase advance is 1800 per focusing period.
This example is a special case of the well-known behaviour
of a linear differential equation of Hill’s type, d2x/dt2 +
(ω2 + f (t))x = 0, where ω is the eigenfrequency of the free
oscillation and f (t) a parameter of the oscillating system
varying periodically with ω0. The parametric excitation
leads to exponential instability of an arbitrarily small initial
perturbation, if

ω =
n
2
ω0, (2)

where n is a positive integer. The widest stopband is the
“half-integer” case, n = 1, often called “parametric instabil-
ity” or “sub-harmonic instability” [9].
Here we are interested in the case, where not a single

particle is driven parametrically, but a coherent eigenmode
of a beam. The lowest order phenomenon is the envelope in-
stability [4,10], where a quadrupolar or envelope eigenmode
is driven parametrically.
The corresponding coherent resonance condition for a

parametric resonance is written with ω relating to the fre-
quency of a coherent eigenmode of the beam. The order
of the motion in the x − x ′plane is described by m as in
Eq. (4), but - in principle - an additional parameter n de-
scribing the parametric order according to Eq. (2) is needed.
Thus, the resonance condition for a coherent eigenmode in
the x − x ′-plane can be written as:

ω ≡ mk0,x − ∆km,coh =
n
2

3600. (3)

Note that ∆km,coh stands symbolically for a coherent space
charge tune shift to express the fact that there is an underly-
ing coherent motion, which leads to a shift of this resonance
with respect to the incoherent one. In most cases it is posi-
tive, but negative values cannot be excluded (Ref. [2] and
in smooth approximation Ref. [11]). The shift is compara-
ble in size with the incoherent space charge tune shift and
depends on the specific eigenmode, hence on m, and possi-
bly on other parameters as well. The shift reflects the fact
that coherent and incoherent resonances differ in nature and
can be displaced. According to Ref. [2] one needs to take
into account that in practice there is also a finite width of
stopbands in addition to a shift.
A well-known example of half-integer parametric reso-

nance is the transverse envelope instability of an ellipsoidal
bunch in a symmetric periodic FODO array of quadrupoles.
We assume a longitudinal focusing provided by two thin rf
gaps in the center of both drift spaces in each cell and employ
the (3d) KV-envelope equation option of the TRACEWIN

code [12]. Parameters are set within a stop-band of insta-
bility by assuming k0,x,y = 1000, a moderate space charge
leading to kx,y = 820, and the longitudinal focusing arbitrar-
ily set to k0,z = 500.

In the above nomenclature the envelope parametric insta-
bility case is written as ω = 2k0,x,y − ∆k2,coh =

1
23600 =

1800 and shown in Fig. 1, where the initial exponential phase
is followed by a more chaotic pattern of saturation, damping
and growth. Details of the lattice and initial envelope are
shown in the insert. Note that the three rms emittances are
initially chosen equal, which results in bunches slightly elon-
gated from spherical. A necessary condition for instability

Figure 1: Evolution of KV-envelopes versus cell number for
k0,x,y = 1000, kx,y = 820.

of this mode is k0,x > 900, while kx is below 900, and simi-
lar for y. This enclosure of 900 justifies the nomenclature
900-stopband.

Higher Order Parametric Instabilities
Here we examine the possibility of higher than m = 2

parametric resonances. A third order parametric instability
with m = 3 and n = 1, hence 3k0,x,y − ∆k3,coh = 1800

is expected for a 600 stopband in full agreement with the
analytical theory of Ref. [2]. Note that a beam symmetric in
x and y has no space charge multipole to drive a third order
resonance phenomenon, except by parametric instability.

The case is retrieved by our 3d simulations for the example
k0,x,y = 900, and found to exist over the same range of kx,y
as predicted in Ref. [2]. For a waterbag distribution and
kx,y = 41.50 the result is shown in Fig. 2. The roughly
doubling of rms emittances is accompanied by a three-fold
phase space structure as shown on the cell 45 phase space
plot. The “triangles” repeat their orientation every second
lattice cell, which confirms the 1800 condition. The growth
of the rms emittance in the exponential phase is preceded
by a weak sixth order single particle (incoherent) resonance
- following the notation 6kx,y = 3600 as indicated by the
phase space symmetry insert at cell 5 - but quickly overtaken
by the lower order parametric case.

This combined third and sixth order phenomenon is simi-
larly encountered in an analogous interplay of second and
fourth order as will be discussed in Section .
We also confirm the additional existence of the half-

integer parametric instability 4k0,x,y − ∆k4,coh = 1800 -
also predicted in Ref. [2] - with a stopband near 450. We
choose k0,x,y = 700 and take an intensity corresponding to
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Figure 2: Top graph: rms emittances versus cell number
for k0,x,y = 900, kx,y = 41.50 for a waterbag distribution.
Bottom graph: phase space plots.

kx,y = 350. For k0,z = 500 (kz = 170) as before we find a
weak evidence of this mode, with only 4% emittance growth.
However, by raising k0,z to 1200 we obtain a 40% emittance
growth as is shown in Fig. 3, with the phase space insert at
cell 20 confirming the fourth order structure. We assume
that the roughly 5 times faster effective synchrotron oscilla-
tion plays a role and possibly reduces the transverse Landau
damping effect, which needs additional study.
Using KV-beams we have also found higher order para-

metric cases with relatively small emittance effects, but no
such evidence was found for waterbag beams. We thus con-
clude that parametric resonances are insignificant beyond
fourth order - at least in the range of parameters studied here.

Ninety Degrees Stopband
We start with a Gaussian distribution truncated at 3.4 σ,

transverse tune of k0x,y = 1200 and a space charge depressed
tune kx,y = 700. As shown in Fig. 4 a fourth order phase
space structure evolves quickly with 90% of rms emittance
growth in less than 10 cells. This can be identified as a single

Figure 3: Rms emittances versus cell number for paramteric
fourth order mode at k0,x,y = 700, kx,y = 350 and waterbag
distribution.

Figure 4: Top graph: rms emittances versus cell number
for k0,x,y = 1200, kx,y = 700 for Gaussian distribution with
inserts showing phase space plots. Bottom graph: evolution
of density (with contour lines) in x along the lattice.

particle resonance owed to the presence of a strong space
charge octupole in the initial Gaussian distribution.

The subsequent evolution to a total growth of over 200%
is characterized by a sudden switch to the envelope insta-
bility with a dominating two-fold symmetry as shown in
the insert at cell 16. The evidence of a growing envelope
instability is owed to the fact that the envelope instability
is an independent eigenmode, which grows exponentially
from the rms mismatch of the initial beam - however small
it is. The recently presented argument of Ref. [6] that it
grows from a mismatch induced by the preceding fourth
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Figure 5: Rrms emittances versus cell number for dynamical
ramp of k0,x,y = 1500 → 1300 for Gaussian distribution
with inserts showing phase space plots.

order resonance contradicts the fact that the envelope equa-
tions - where fourth order effects are entirely absent - already
reveal the 90 degree stopband. The extent and shape of it is
fully consistent with the PIC simulation result as was shown
in Ref. [1].
Results for the evolution of the density in x along the

lattice are shown in Fig. 4. They indicate an initial incoherent
growth due to the fourth order single particle resonance. A
coherent motion takes over between cells 8-10, and a gradual
return to more incoherent motion again after 20 cells. The
contour lines of peak density in the centre emphasize this
transfer of incoherent motion well matched to the lattice to
a coherent one, where two cells are needed to perform one
period of the strongly excited envelope oscillation.

This coherence is a characteristic of the half-integer para-
metric resonance as opposed to the incoherent behaviour at
single particle resonances.

Higher Order Lattice Harmonics
Above the 900 stopband we have not found any evi-

dence of parametric resonances. Theoretically, a 1200

integer parametric stopband of a third order resonance
3k0,x,y − ∆k3,coh = 3600 could exist, but it must be as-
sumed to be much weaker than the half-integer parametric
resonance found above at 600.
Instead, a slow ramp of k0,x,y from 1500 → 1300 shows

that a number of space charge driven single particle res-
onances exist as shown in Fig. 5. They require, however,
higher harmonics h of the lattice function (with space charge)
according to

mkx,y = 3600h. (4)

Thus, resonances of 10th, 8th and 6th order are crossed se-
quentially for kx,y = 1440, 1350, 1200 pertaining to h =
2, 3, 4. For better identification of the resonant structure and
order we have seeded the initial Gaussian distribution with
an initial halo seed of 10% of the particles spread out to an
rms emittance enhanced by a factor of nine.

Figure 6: Typology of structural space charge resonances.

SUMMARY ON TYPOLOGY
We have identified two groups of structural resonant space

charge effects:

• Single particle resonances: The driving space charge
term (pseudo-multipole) stems from the matched ini-
tial distribution. In the course of the resonance the
driving term may change and/or de-tuning may oc-
cur. Higher order harmonics of the focusing play a
role above the 900 stopband. In an initial KV-type dis-
tribution space charge multipoles are absent beyond
second order, hence the corresponding single particle
resonances are also absent.

• Parametric resonances: Here the driving space charge
term is pumped parametrically from initial noise, if the
resonance condition is fulfilled. For non-KV beams we
practically only find half-integer cases of parametric
resonances, and up to fourth order. For initial KV-type
distributions, instead, all orders of parametric reso-
nances exist in theory [2] - in simulation limited by
resolution.

The distinction single particle versus parametric resonances
is not always sharp. Assume a distribution close to a KV,
but with weakly non-uniform density. In such a case one
can still expect single particle resonances, but a parametric
enhancement of the correlated pseudo-multipole as well.

Three parameters characterize the different types of struc-
ture space charge resonances (see Fig. 6): m stands for the
order of the resonance (space charge potential term order);
n for the order in the parametric driving mechanism; h the
lattice harmonic, which is theoretically relevant for both,
single particle and parametric resonance, but we have not
found values different from unity for the latter.

CONCLUSION
This work shows that in high intensity beams two major

groups of structural space charge resonant effects exist. They
are distinguished by whether the space charge driving term
is present in the initial beam, or built up from noise by a
parametric process. The latter has no counterpart in exter-
nally driven resonances and is of the so-called half-integer
parametric resonance or instability type.
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A common feature at different orders is the joint appear-
ance of a parametric resonance and a single particle res-
onance of twice the order. As an example, the envelope
instability and fourth order single particle resonance are in-
dependent mechanisms - but not without influencing each
other. The associated ninety degree stopband is of particular
concern in high current linacs.

The role of the third - here longitudinal - dimension with
the synchrotron oscillation as additional mechanism possibly
influencing Landau damping must be addressed carefully in
future work.
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