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Abstract 
The Main Injector (MI) at Fermilab currently produces 

high-intensity beams of protons at energies of 120 GeV 
for a variety of physics experiments. Acceleration of 
polarized protons in the MI would provide opportunities 
for a rich spin physics program at Fermilab. To achieve 
polarized proton beams in the Fermilab accelerator com-
plex, shown in Fig.1, detailed spin tracking simulations 
with realistic parameters based on the existing facility are 
required. This report presents studies at the MI using a 
single 4-twist Siberian snake to determine the depolariz-
ing spin resonances for the relevant synchrotrons.  Results 
will be presented first for a perfect MI lattice, followed by 
a lattice that includes the real MI imperfections, such as 
the measured magnet field errors and quadrupole misa-
lignments. The tolerances of each of these factors in 
maintaining polarization in the Main Injector will be 
discussed. 

INTRODUCTION 
The Main Injector is a multi-purpose synchrotron [1] 

which ramps up the proton beam from a kinetic energy 
of 8 GeV to 120 GeV. It provides neutrino beams for 
the MINOS, MINERvA and NOvA experiments, as 
well as the future Long-Baseline Neutrino Facility and 
Deep Underground Neutrino Experiment. It will also 
provide muon beams for Fermilab's Muon g-2 and 
Mu2e experiments. It delivers beam to the SeaQuest 
fixed-target experiment and to a dedicated facility for 
testing of detector technologies. 

The acceleration of polarized protons in the MI was ini-
tially studied with the use of two superconducting helical 
dipole Siberian snakes. However, in 2012 it was discov-
ered that there was no longer sufficient space in the MI to 
place two Siberian snakes at opposite sides of the ring [2].  
A solution using one 4-twist Helical Snake in the MI [3] 
was found that seemed promising to provide polarized 
proton beams to the experiments.  Spin tracking studies in 
the MI became necessary to reveal if it was possible or 
not in practice to produce and maintain a polarized proton 
beam in the Fermilab accelerators using single Siberian 
snakes in the larger synchrotrons. This report presents 
studies to determine the intrinsic spin resonance strengths 
for the relevant synchrotrons using a perfect lattice. This 
is followed by the implementation of various realistic 
imperfections, such as magnet field errors and quadrupole 
misalignments, into the MI lattice to study the tolerances 
of closed orbit corrections in maintaining polarization. All 

results presented here assume that the Siberian snake is a 
point-like spin flipper. The simulation using a single 4-
twist helical dipole and its imperfection will be discussed 
at a later stage.  

 
Figure 1: Main Injector accelerator complex conceptual 
layout showing equipment needed for polarized proton 
beam (in blue). 

SPIN DYNAMICS OF THE POLARIZED 
PROTON 

For a beam of particles, the polarization vector is de-
fined as the ensemble average of spin vectors. The evolu-
tion of the spin vector of a beam of polarized protons in 
external magnetic fields is governed by the Thomas-BMT 
equation [4] 

where the polarization vector S


 is expressed in the frame 
that moves with the particle. 

B


 and 
//B


 are the trans-

verse and longitudinal components of the magnetic fields 
in the laboratory frame with respect to the velocity c


 of 

the particle. The vector E


 stands for the electric field, G 
is the anomalous gyromagnetic g-factor, and 2mc is the 

energy of the moving particle. In a pure magnetic field, 

E


 =0. 
In the SU(2) representation, the spin vector can be ex-

pressed with two-component spinor T),( 21    where 

21,  are complex numbers.  The conversion between 

SU(2) and SO(3) is 

                                  )2.2( 
S  

where ),,( 321  


 are Pauli matrices. Due to the 

unitarity of the spin vector, 2

2

2

1  P , P is the 

polarization. P=1 for a single particle. In spinor notation, 
the T-BMT equation can be written as 

                          )3.2()(
2
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The rotation from i to f is expressed by a unitary matrix 
M as 

           )4.2(2)(

i

ni

if eM 




 

where n


 is the rotation axis,  is the spin rotation angle. 

i  is the initial spin state, 
f  is the final spin state.  

SPIN TRACKING USING PTC 

Tracking Code PTC  
The Polymorphic Tracking Code (PTC) [5] written by 

Étienne Forest is a library of Fortran90 data structures and 
subroutines for integrating the equations of orbital and 
spin motion for particles in modern accelerators and stor-
age rings. PTC implements the high energy physics lattic-
es and uses the “Fully Polymorphic Package”, FPP, as the 
engine to do the Lie algebraic calculations. FPP imple-
ments Taylor maps (aka Truncated Power Series Algebra 
or TPSA) and Lie algebraic operations, which allows it to 
extract a Poincaré map from PTC. FPP also provides the 
tools to analyze the resulting map. The most common and 
important tool is the normal form: with this at hand, one 
can compute tunes, lattice functions, and nonlinear exten-
sions of these and all other standard quantities of accel-
erator theory. Indeed, the combination of PTC and FPP 
gives access to all of standard perturbation theory on 
complicated accelerator lattice designs. 
 

Normal Form for Spin on the Closed Orbit: 0n


 
In PTC, spin is considered as a spectator, the closed or-

bit does not depend on spin.  A map: ),( SmT  , where m 

is an orbital map and S is a spin matrix that depends on 
the orbit. This map acts on a ray z

  and a spin vector s


 as  
               
             )1.3())(),((),( szSzmszT


  

 
The matrix for the spin is evaluated at z


 and multiplies 

onto the vector s


. If a beam line #1 is followed by beam 
line #2, the spin map for the full beam line is then given 
by  
 

)2.3(),(

),(),(
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SmSmTT
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The matrix 

112 SmS   is simply the product of 
12SS  where 

)(2 zS
  is evaluated at )(1 zmz


 with 

),,,,,( 65 zzpypxz yx


. If the map is a one-turn map 

around the closed orbit at some position s whose coordi-
nates will be )0,,0,0(0 


 , without loss of generality, it 

is straight forward to raise Ts to a power
))0(,0(),0( sSsT k

s
k

s


 . This simply reflects the fact that on 

the closed orbit, the matrix S for the spin is a constant 
matrix turn after turn. This matrix is a rotation and thus 
contains an invariant direction denoted as

0n


. We have      

00)0( nnS k
s


 .  Now at some arbitrary position s, the ma-

trix )0(


S can be expressed in terms of 0n


 and its rotation 

angle θ0 around 0n


:                    

            )3.3()exp()0( 00 LnkSk
s


   

The matrices iL are the usual generator of rotations obey-

ing the commutation relations of the rotation group:                                 
                    )4.3(],[ kijkji LLL   
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where ε = -1 is chosen in the FPP package. L1,2,3 are re-
ferred to as Lx,y,z most of the time.  Fig. 2 gives a pictorial 
view of the algorithms of PTC. The red dot represents a 
ray moving in the “real world.” The blue dots represent 
the spin.  

 
 

Figure 2: Pictorial view of the algorithms of PTC. 

The Nonlinear Normal Form for the Invariant 
Spin Field (ISF): )(zn


 

The invariant spin field (ISF) [6] was introduced by 
Barber and his collaborator as follows: there exists a 
vector ),( szn

 , a 3–vector field of unit length obeying the 

T–BMT equation along particle orbits ));(( ssz
  and ful-

filling the periodicity condition ),(),( sznCszn


 , 

where C is the circumference. Thus 
 

    
)6.3();();(

));,(());,((

33 mnnSorsznszS

sszmnCsszmn












 

 
where );( szm


 is the new phase space vector after one 

turn starting at z


and s and );(33 szS


  is the corresponding 

spin transfer matrix. This equation states that a vector 
)(zn

 whose transformation is under the spin matrix )(zS
   

is the same as its transformation under the map );( szm
 . 

This equation can be easily applied to 0n


 since it is a 

constant under the application of )0(


S  and the closed orbit 

is by the definition a constant, i.e. 0)0(


m . For an arbi-
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trary z


, Eq. (3.6) implies that if we follow ),( szn
  after k 

turns, the answer is simply kmn 


. Thus the Fourier 

spectrum of kmn 


 will not contain the spin frequency. 
This object behaves as if spin motion did not exist. If 
viewed as a vector field, the entire three dimensional field

),( szn


 is left invariant under the action of the full spin-

orbital map T. Obviously, if a particle at coordinate 
),,,,,( 65 zzpypxz yx

  starts with a spin slightly differ-

ent from ),( szn
 , the actual spin will move around the axis 

),( szn
  and its spectrum will contain the spin tune as well 

as the orbital tunes. The chief aspects of the ISF are that:  
1) For a turn–to–turn invariant particle distribution in 
phase space, a distribution of spins initially aligned along 
the ISF remains invariant (in equilibrium) from turn–to–
turn, 2) For integrable orbital motion and away from 
orbital resonances, the ISF determines the maximum 
attainable time averaged polarization                          
                     )7.3(),(lim sznP


  

on a phase space torus at each s, where  denotes the 

average over the orbital phases, 3) Under appropriate 
conditions, SnJ s


  is an adiabatic invariant while sys-

tem parameters such as the reference energy are slowly 
varied.  

SPIN TRACKING IN THE MI  
The beam in the MI is injected at M306 (see Fig. 1) 

from the Recycler Ring at an energy of 8 GeV, and accel-
erated to 120 GeV from 0.413 seconds to 1.08 seconds, 
then slow spilled for another 0.5 seconds to the extraction 
Septum at M522 to the fixed target experiment. The Sibe-
rian snake would be placed at M222, a straight section 
with a more than 10 m long drift space, opposite of the 
ring to M522. For the purpose of spin tracking in the MI, 
a special module called z_fnal_meiqin.f90 was written 
and added into the PTC library. It handles the acceleration 
of the proton beam through the γ-transition from a kinetic 
energy of 8 GeV at injection to the flat-top of 120 GeV 
(γ=9.528 to 128.93). Based on the MI ideal lattice, the 
transition energy γ is 21.619 at a time of 0.568 seconds 
after injection, as calculated by PTC. Furthermore, the 
real 21Cycle tables of the acceleration rate, the tunes and 
the chromaticity changes during the ramp, were also im-
plemented in the module. There are 20 RF cavities in the 
MI for acceleration. They altogether are treated as one 
thin element at the end of the cavity section in PTC. The 
RF phase is 23.189o before the transition and (π-23.189o) 
right after the transition. The beam can be assigned by 
95% of normalized emittance in the transverse planes and 
momentum deviations (Δp/p) in the longitudinal plane. 
Longitudinal emittance will then be calculated in the 
module. 

With the help of Étienne Forest, a code in Fortran90, 
named fnal_injector_accelerate.f90, was written to do the 
orbit-spin tracking in the MI. We started with the flat 
output file of the latest MAD lattice of the Main Injector 

ring. The input file of the MAD lattice file was translated 
with Bmad [7] developed by David Sagan, Cornell Uni-
versity. Dave Sagan implemented the PTC/FPP library of 
Étienne Forest into his Bmad code. Therefore, they built 
up an interface between Bmad and PTC. MAD, Bmad and 
PTC agree to within machine precision. 

After the orbit and spin were tracked for the first turn, 
the One-Turn-Map for both orbital and spin was obtained. 
Then the normal form for spin on the closed orbit: 0n


, 

was calculated, which actually is the Invariant Spin Field 
(ISF) on the closed orbit. Then, the spin polarizations of 
all particles at injection are chosen to be aligned with 0n


. 

A numerical computation of the ISF by stroboscopic 
average is compared with an evaluation of the normal 
form ISF of a single particle, and was found that there is 
very little difference between these two results. 

Tracking with an Ideal Lattice 
Multi-particle tracking was done first by sending 128 

particles uniformly distributed (called “flat distribution” 
here) in vertical and longitudinal phase space, as seen in 
Fig. 3. These 128 particles represent the beam. Using 
these results, the average polarization for different beam 
distributions can be calculated by integration as follows: 

         )1.4(),(
1 128

1
2121

21




i

iave SP 





 

 
Figure 3: Particles distributed in the phase space. 

For a Gaussian distribution,        
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First, the particles were tracked with no snake. Fig. 4 
presents the results of the average polarization. The x-axis 
is GeVEoE

E
o

938.0,  , and y-axis is the Polariza-

tion, “1” represents 100% polarization aligned with 0n


, 

the Invariant Spin Field on the closed orbit.  The black 
line is the result of the initial beam with uniform distribu-
tion (Flat), and the red line represents the result of the 
initial beam with Gaussian distribution (cut at 6σ).  Both 
cases show that polarization will be lost soon after the 
beginning of the acceleration.  
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The particles were then tracked with a single snake 
placed in the ring. The snake is represented by a point-
like spin flipper.  Fig. 5 presents the average polarization 
of particles with 14 πmm·mrad (top panel) and 20 
πmm·mrad (bottom panel)  in vertical phase space, re-
spectively.  The momentum spread in both simulations is 
1.25E-3. Polarization can be preserved at more than 90% 
at the end of the acceleration for most phase space distri-
butions, except for the “Flat” distribution, which ends up 
at 88.8%.   Similar results of average polarization were 
obtained for particles with 20 πmm·mrad in vertical phase 
space and momentum spread of 1.25E-3.  The simulations 
show that the strongest resonance happens at γ=119.69   
(Gγ=215), resulting in a big loss of polarization at the 
resonance, which however recovers in most cases.  All the 
resonances here refer to the intrinsic spin resonances. 

 
Figure 4: Spin tracking with no snake in the ring for 
beams with different distributions in phase space. 

 
 

 
Figure 5: Spin tracking in an ideal MI lattice, using a 
point-like snake to flip the spin. Top panel: the emittance 
of the beam is 14 πmm.mrad. Bottom panel: the emittance 
of the beam is 20 πmm.mrad. The distributions in phase 
space are flat, Gaussian with 3σ or 6σ cut in y (vertical 
plane) and in time (longitudinal plane). 

Tracking with a Realistic Lattice 
The measured field errors [8] and the misalignment da-

ta of all the magnets in the MI ring have been implement-
ed into the MI lattice. PTC reads the survey coordinates 
and uses its pointer and patch functions to place each 
magnet into its actual position in the ring. This includes 
all the misalignment information, such as the shifts in x, y 
and z, as well as the roll and pitch angles.  

The closed orbit of the MI at injection before correction 
due to the magnetic field errors and misalignment is 
shown in Fig.6 

 
Figure 6: Closed orbit before correction. 

 
Figure 7: Closed orbit after correction. 

The orbit correction program for MI operation is able to 
correct the orbit to its desired orbit in RMS differences of 
0.18 mm and 0.15 mm in the horizontal and vertical 
planes, respectively. PTC takes the beam position monitor 
(BPM) readings of the machine corrected orbit as the 
desired orbit, and corrects the closed orbit to it with al-
most no difference, seen in Fig. 7.  

Spin tracking in PTC was performed after various orbit 
corrections have been applied. Just as in tracking with an 
idea lattice, PTC adjusts the tunes and chromaticities  
after the orbit corrections, and also during the ramp ac-
cording to the ramp table of the MI operation 21 Cycler, 
the event for beams to SeaQuest experiment. 256 particles 
uniformly distributed on the vertical phase space with an 
emittance of 20 πmm·mrad  and on the longitudinal phase 
space with a momentum spread Δp/p = 1.25x10-3 were 
tracked. Fig. 8 presents the results. The x-axis is Gγ, with 
G=1.793 for protons, and γ the energy. The blue line 
represents the polarization for a beam with a flat particle 
distribution, while the orange line for a beam with a 
Gaussian distribution 6σ Cut.  The final average polariza-
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tion remains at 85.2% for the flat distribution, and at 
88.1% for the Gaussian distribution 6σ Cut. This presents 
the best results that the MI can achieve for closed orbit 
corrections. 
 

 
Figure 8: Average polarization after PTC corrected the 
closed orbit to the BPM readings. The RMS values of the 
differences are almost zero.  Note that the RMS values of 
the difference between the BPM readings and the MI 
desired positions are 0.19 mm in the horizontal and 0.15 
mm in the vertical plane. Final polarization is 85.2% for 
the flat distribution and 88.1% for the Gaussian distribu-
tion 6σ cut. 

The base tune of the MI is 26.425 in the horizontal 
plane and the 25.415 in the vertical plane. The spin depo-
larizing resonances occur when Gγ= mP±υy, where P is 
the periodicity of the lattice, and υy is the vertical tune 
with υy=25.415. In the presence of magnetic field errors, 
periodicity is broken, P=1. Therefore, the most imperfect 
resonances occur for integers closest to ±υy.  The tracking 
results show that the most imperfect resonances happen at 
Gγ=59, 94, 95, 146, 206, 209, which is near to M υy, , 

M=2, 4, 6, 8.  The strongest resonance in this case is at 
Gγ= 209.  

To see the effect of vertical orbit errors on the polariza-
tions, we let PTC correct the closed orbit to the MI de-
sired orbit with slightly larger RMS errors. Fig. 9 presents 
the results for three different cases. In the top panel, the 
correction of the RMS error is 0.19 mm in the horizontal 
and 0.21 mm in the vertical planes. Not only do the depo-
larization resonances shown in Fig. 8 get stronger, but the 
two moderate resonances near Gγ=125 combined into one 
stronger resonance. Similarly, this also happened for 
resonance near Gγ=150 and 175. In the middle panel, the 
polarization is lost completely at Gγ=90 when PTC cor-
rected the closed orbit to the MI desired orbit for RMS 
errors of  0.27  mm in the horizontal plane and 0.28 mm 
in the vertical plane. At Gγ=89.6, the average polarization 
drops below 70%.   In the bottom panel,  RMS errors of  
0.43  mm in the horizontal plane and 0.45 mm in the 
vertical plane lead to strong imperfect resonance near 
Gγ=59 and 58.4, resulting in complete loss of polariza-
tion.  

CONCLUSIONS 
Spin tracking of polarized protons in the Main Injector 

has been carried out for a “realistic” lattice that includes 
measured magnet field errors and misalignment survey  

     

 
Figure 9: Average polarization for PTC closed orbit cor-
rections to the desired orbit for various RMS values. 

data, as well as various degrees of orbit corrections that 
demonstrate the requirements that are needed to preserve 
significant polarization in the Main Injector.  The simula-
tions have shown that the polarization in the Main Injec-
tor is very sensitive to the excursions of the closed orbit. 
RMS deviations between the corrected orbit and the de-
sired orbit should not be larger than 0.2 mm in both the 
horizontal and the vertical planes. The present MI orbit 
correction program can get closed orbit corrected to the 
desired orbit with RMS excursions of 0.18mm in the 
horizontal plane and 0.15mm in vertical plane. The final 
polarizations in the MI after ramping the energy up to 120 
GeV can be kept at 85.2% for a flat beam distribution and 
88.1% for a Gaussian beam distribution a 6σ cut using a 
point-like snake (flip-spin).  

Implementation of a full-size 4-twist helical dipole in-
stead of a point-like snake has started. PTC has success-
fully performed Symplectic integration through a specific 
4-twist helical dipole configuration at various energies. 
Spin tracking studies of polarized protons in the Booster, 
as well as in the transfer lines are underway. This will 
allow to confirm whether polarized protons can be pro-
duced and maintained in the Fermilab accelerator com-
plex using single Siberian snakes in the larger synchro-
trons. 
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