Paper |
Title |
Page |
MOPR022 |
Longitudinal Particle Tracking Code for a High Intensity Proton Synchrotron |
110 |
|
- M. Yamamoto
JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
|
|
|
We have been developing a longitudinal particle tracking code to design and investigate the beam behavior of the J-PARC proton synchrotrons. The code calculate the longitudinal particle motion with a wake voltage and a space charge effect. The most different point from the other codes is that a synchronous particle motion is calculated from the bending magnetic field pattern. This means the synchronous particle is independent from an acceleration frequency pattern. This feature is useful to check the adiabaticity of the synchrotron. The code also calculates the longitudinal emittance and the filling factor at an rf bucket under the multi-harmonics. We will describe the feature of the code.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THAM6X01 |
The Path to 1 MW: Beam Loss Control in the J-PARC 3-GeV RCS |
480 |
|
- H. Hotchi, H. Harada, S. Kato, M. Kinsho, K. Okabe, P.K. Saha, Y. Shobuda, F. Tamura, N. Tani, Y. Watanabe, K. Yamamoto, M. Yamamoto, M. Yoshimoto
JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
|
|
|
The J-PARC 3-GeV RCS started 1-MW beam test from October 2014, and successfully achieved a 1-MW beam acceleration in January 2015. The most important issues in realizing such a high power routine beam operation are control and minimization of beam loss. This talk will present the recent progress of 1-MW beam tuning, especially focusing on our approaches to beam loss issues.
|
|
|
Slides THAM6X01 [1.849 MB]
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|