Paper | Title | Page |
---|---|---|
TUAM6X01 | First Analysis of the Space Charge Effects on a Third Order Coupled Resonance | 278 |
|
||
The effect of space charge on bunches stored for long term in a nonlinear lattice can be severe for beam survival. This may be the case in projects as SIS100 at GSI or LIU at CERN. In 2012, for the first time, the effect of space charge on a normal third order coupled resonance was investigated at the CERN-PS. The experimental results have highlighted an unprecedented asymmetric beam response: in the vertical plane the beam exhibits a thick halo, while the horizontal profile has only core growth. The quest for explaining these results requires a journey through the 4 dimensional dynamics of the coupled resonance investigating the fixed-lines, and requires a detailed code-experiment benchmarking also including beam profile benchmarking. This proceeding gives a short summary of the experimental results of the 2012 PS measurements, and address an interpretation based on the dynamics the fixed-lines. | ||
![]() |
Slides TUAM6X01 [7.183 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEAM1X01 | Code Bench-Marking for Long-Term Tracking and Adaptive Algorithms | 357 |
|
||
At CERN we have ramped up a program to investigate space charge effects in the LHC pre-injectors with high brightness beams and long storage times. This in view of the LIU upgrade project for these accelerators. These studies require massive simulation over large number of turns. To this end we have been looking at all available codes and started collaborations on code development with several laboratories: pyORBIT from SNS, SYNERGIA from Fermilab, MICROMAP from GSI and our in-house MAD-X code with an space charge upgrade. We have agreed with our collaborators to bench-mark all these codes in the framework of the GSI bench-marking suite, in particular the main types of frozen space charge and PIC codes are being tested. We also include a study on the subclass of purely frozen and the adaptive frozen modes both part of MAD-X in comparison with the purely frozen MICROMAP code. Last, we will report on CERN's code development effort to understand and eventually overcome the noise issue in PIC codes.
J. Coupard et al., ‘‘LHC Injectors Upgrade, Technical Design Report, Vol. I: Protons'', LIU Technical Design Report (TDR), CERN-ACC-2014-0337. |
||
![]() |
Slides WEAM1X01 [2.348 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPM9X01 | Space Charge Effects and Mitigation in the CERN PS Booster, in View of the Upgrade | 517 |
|
||
The CERN PS Booster (PSB) is presently running with a space-charge tune spread larger than 0.5 at injection. Since the High Luminosity LHC (HL-LHC) will require beams with twice the intensity and brightness of today, the LHC Injector Upgrade (LIU) Project is putting in place an upgrade program for all the injector chain and, in particular, it relies on the important assumption that the PS Booster can successfully produce these beams after the implementation of the 160 MeV H− injection from Linac4. This contribution describes the studies (measurements and simulations) that have been carried out to confirm that the PSB can indeed perform as needed in terms of beam brightness for the future HL-LHC runs. The importance of the mitigation measures already in place, such as the correction of the half-integer line, and the effects of non-linear resonances on the beam are also discussed. | ||
![]() |
Slides THPM9X01 [6.786 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |