Author: Ji, H.F.
Paper Title Page
MOPR002 Study on the Magnetic Measurement Results of the Injection System for CSNS/RCS 46
 
  • M.Y. Huang, S. Fu, N. Huang, L. Huo, H.F. Ji, W. Kang, Y.Q. Liu, J. Peng, J. Qiu, L. Shen, S. Wang, X. Wu, S.Y. Xu, J. Zhang, G.Z. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (11205185)
A combination of the H stripping and phase space painting method is used to accumulate a high intensity beam in the Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS). The injection system for CSNS/RCS consists of three kinds of magnets: four direct current magnets (BC1-BC4), eight alternating current magnets (BH1-BH4 and BV1-BV4), two septum magnets (ISEP1 and ISEP2). In this paper, the magnetic measurements of the injection system were introduced and the data analysis was processed. The field uniformity and magnetizing curves of these magnets were given, and then the magnetizing fitting equations were obtained.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPL005 The Simulation Study of Beam Dynamics for CSNS Linac During Beam Commissioning 192
 
  • Y. Yuan, H.F. Ji, S. Wang
    IHEP, Beijing, People's Republic of China
  • J. Peng
    CSNS, Guangdong Province, People's Republic of China
 
  China Spallation Neutron Source (CSNS) is a high intensity accelerator based facility. Its accelerator consists of an H injector and a proton Rapid Cycling Synchrotron. The injector includes the front end and linac. The RFQ accelerates the beam to 3MeV, and then the Drift Tube Linac (DTL) accelerates it to 80MeV[1]. An Medium Energy Beam Transport (MEBT) matches RFQ and DTL, and the DTL consists of four tanks. Commissioning of the MEBT and the first DTL tank (DTL1) have been accomplished in the last run. Due to the difference of actual effective length and theoretical effective length of magnets in MEBT and DTL1, in order to compare its impact of beam transport, this paper takes a beam dynamics simulation on beam transport in MEBT and DTL1 with IMPACT-Z code[2]. Meanwhile, the transport of beam with different emittance in MEBT and DTL1 is studied because of the large emittance at RFQ exit. All the simulation includes magnet error and RF error.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPL024 Study of Magnets Sorting of the CSNS/RCS Dipoles and Quadrupoles* 247
 
  • Y.W. An, H.F. Ji, Y. Li, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
  • J. Peng
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: Work supported by National Natural Science Foundation of China (11405189)*
The Rapid Cycling Synchrotron plays an important role in the China Spallation Neutron Source. RCS accumulates and accelerates the proton beams from 80MeV to 1.6GeV for striking the target with the repetition rate of 25Hz. RCS demands low uncontrolled loss for hands on maintenance, and one needs a tight tolerance on magnet field accuracy. Magnet sorting can be done to minimize linear effects of beam dynamics. Using closed-orbit distortion (COD) and beta-beating independently as the merit function, and considering maintaining the symmetry of the lattice, a code based on traversal algorithm is developed to get the dipoles and quadrupoles sorting for CSNS/RCS. The comparison of beam distribution, collimation efficiency and beam loss are also investigated according to beam injection and beam accelerating.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPM7X01 The Application of the Optimization Algorithm in the Collimation System for CSNS/RCS 397
 
  • H.F. Ji, M.Y. Huang, Y. Jiao, N. Wang, S. Wang, S.Y. Xu
    IHEP, Beijing, People's Republic of China
 
  The robust conjugate direction search (RCDS) method, which is developed by X. Huang from the SLAC National Accelerator Laboratory, has high tolerance against noise in beam experiments and thus can find an optimal solution effectively and efficiently. In this paper, the RCDS method is used to optimize the beam collimation system for Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS). A two-stage beam collimation system was designed to localize the beam loss in the collimation section in CSNS/RCS. The parameters of secondary collimators are optimized with RCDS algorithm based on detailed tracking with the ORBIT program for a better performance of the collimation system. The study presents a way to quickly find an optimal parameter combination of the secondary collimators for a machine model for preparation for CSNS/RCS commissioning.  
slides icon Slides WEPM7X01 [1.137 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)