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Fermilab Booster: 

FDOODFO cell 

 Intensity ≈ 6 x 1012 p, 
much grater than the 
design value  

 At injection, E= 400 MeV, 
γ=1.4  

 Collective effects are 
important 

   space-charge 
    wake fields 

 24 cells 
 F-magnets 
 D-magnets 
 straight sections  



 Vacuum chamber geometry 

   We assume parallel-planes chamber geometry is a 
good approximation for calculating wake fields   

 Laminations:       strong wake fields 

Particularities of Booster magnets: 



Realistic simulations should include : 

 Single particle maps  

 3D space-charge solvers for the parallel-planes 
magnets and the circular straight sections 

 Coupling wake fields for laminated magnets 
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q,Q - charge of the trailing and the leading particle 
X,Y  - displacements of the leading particle 
x,y  - displacements of the trailing particle 
|z| - distance between the leading and the trailing particles 

Wakes for chambers with parallel-planes geometry  

For simulations we need:  W| | (z), W
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quadrupole terms 
 
Not present in circular chambers 
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Z=Z(R) 

The impedance can be written in a good approximation as 
function of  
the surface impedance R(ω) 

     for parallel-planes geometry 

Impedance functions 
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 iron laminations 

 dielectric crack  

 laminations are shorted  

The calculation of the impedances reduces to the calculation 
of the surface impedance  for crack, R

c 

K.Y. Ng, Fermilab, FN-0744 

Laminated structure model  
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 Low ω behavior of Z|| is resistive-wall like ≈ ω1/2 but ≈400 times 
larger than for an iron resistive-wall  pipe   

 The impedances show two peaks in the interval 20 MHz -200 MHz 

Impedance functions, F-magnet 



 For distance of the order of meters wakes are large 

 W||(z) oscillates in sign, is repulsive for z<2m, attractive around z 
≈4m 

 At large z, W┴
x,y

(z) decays faster than resistive-wall wake 

Wake functions, F-magnet 



Outline: 

 Introduction 

 Impedance and wake in laminated magnets 

 Synergia code 

 Results 

 Conclusions 



CCA PETSc Matplotlib Numpy PyTables 

Scientific Computing Infrastructure 

ATLAS GSL 

LAPACK FFTW HDF5 

Numerical Computing Infrastructure 

Python Boost 

Flex Bison 

Generic Computing Infrastructure 

 Synergia is a composite code containing modules from several sources 
 Synergia utilizes state-of-the-art numerical and general computing infrastructure 

Nonlinear 
Optics 

Space 
Charge 

Impedance/ 
Wakefields 

Electron 
Cloud 

Beam-beam 

IMPACT 

Sphyraena 

Sphyraena 
solvers 

ResWall 
S2EC BeamBeam

3D 

TxPhysics 

CHEF 
Vorpal 

Synergia2 

Generic 
wakes 



New modules for Booster simulation: 

  3D Poisson solvers (PIC) for parallel-planes and 
rectangular vacuum chamber geometry 

 General impedance module, requires a file with 
tabulated wake functions 
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Wake field simulation: 
  130,000 macroparticles per bunch 

Example:  transverse kick of the macroparticle “i”  
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Tunes separated to minimize coupling effect 

Evolution of H. and V 
tune monitored over 
time for intensities 

from 2 to 15 injected 
turns 

 Direct measurement of tune shift with well-separated tunes  

 - Large tune separation to minimize coupling effect 

 - Cumulative effect on tune observed 

 - Magnification from laminations in keeping with prediction 

 - Tunes recorded continuously over 1st few ms of cycle 

Chao, Heifets, Zotter  PRSTAB vol. 5, 
111001 2002 

Experiment Daniel McCarron 
PhD Thesis, 2010 



Quadrupole wake effect:   
υ

x
 increases  

υ
y
 decreases  

 No net acceleration 
 Runs at injection E=400MeV 
 Good agreement with the 

experiment 

Coherent tune shift, comparison with experiment 
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quadrupole terms 



1000 turns 

Phase space profiles 

injection 

horizontal 

vertical 

longitudinal 

 We start with a matched beam for the simulations without 
collective effects 

 The departing particles after 1000 turns (red points) are traced 
back. At injection they are close to the separatrix  

 Wake fields contribute to beam loss, ≈1% after 1000 turns 



 The attraction between bunches reduces beam loss 

Bucket length =5.6m 

Longitudinal wake 

 Beam loss is reduced by the wake interaction between bunches 

Single bunch versus multi-bunch simulation 

Longitudinal profile 



Emittance 

 Wake fields increase strongly the emittance 
 The space-charge effect on emittance is much smaller 
 The transverse wakes increase the transverse emittance 

 3 simulations: 
Space-charge and full 
wake 
Space-charge and 
transverse wake only 
Space-charge only 



Conclusions: 

 The laminated wake fields are large and have a very 
different shape then the resistive wall ones  

 The coherent tune shift simulations are in good agreement 
with experiment 

 The longitudinal wake has the potential to produce 
significant beam loss 

 Bunch-bunch wake interaction reduces beam loss 

 The wake fields increase strongly the emittance 



Study 2 

Tunes separated to minimize coupling effect 

Tunes vs. intensity near injection, and later in cycle 

Evolution of H. and V 
tune monitored over 

time for intensities from 
2 to 15 injected turns 
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