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Project Overview 
BASROC (The British Accelerator Science and Radiation Oncology 

Consortium, BASROC) 

 

 

• CONFORM project ( COnstruction of a Non-scaling FFAG for Oncology, 

Research, and Medicine ) 

• 4 year project April 2007 – March 2011 

• 3 parts to the project 

– EMMA  design and construction ~ £6.5m (~$9M) 

       Electron Model for Many Applications (EMMA) 
– PAMELA design study    

– Applications study  



Bruno Muratori HB2010 October 2010 

 

 

EMMA International Collaboration 

• EMMA design is an international effort and we 

recognise and appreciate the active collaboration 

from: 

– Brookhaven National Laboratory 

– Cockcroft Institute UK 

– Fermi National Accelerator Laboratory 

– John Adams Institute UK 

– LPSC, Grenoble 

– Science & Technology Facilities Council UK  

– TRIUMF 

– ……….. 
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EMMA Goals 

Graphs courtesy of Scott Berg BNL 
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Lattice Configurations 

Understanding the NS-FFAG beam 

dynamics as function of lattice tuning & RF 

parameters 

Graphs courtesy of Scott Berg BNL 

Time of Flight vs Energy 

• Example: retune lattice to vary 

longitudinal Time of Flight  

curve, range and minimum 

• Example: retune lattice to vary 

resonances crossed during 

acceleration 

 

Tune plane 
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Accelerator Requirements 

• Injection & extraction at all energies, 10 - 20 MeV    

• Fixed energy operation to map closed orbits and 

tunes vs momentum 

• Many lattice configurations  

– Vary ratio of dipole to quadrupole fields 

– Vary frequency, amplitude and phase of RF cavities 

• Map longitudinal and transverse acceptances with 

probe beam 

EMMA to be heavily instrumented with beam 

diagnostics 
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LAYOUT AND LATTICE 
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Parameter  Value  

Nominal Gun Energy 350 keV  

Injector Energy  8.35 MeV  

Max. Energy  35 MeV  

Linac RF Frequency  1.3 GHz 

Max Bunch Charge  80 pC  

Emittance   5-15 mm-mrad 

ALICE 
Accelerators and Lasers In Combined Experiments 

EMMA 
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EMMA Parameters & Layout 

Injection Line 

Diagnostics Beamline 

Frequency 
(nominal) 

1.3 GHz 

No of RF cavities 19 

Repetition rate 1 - 20 Hz 

Bunch charge 16-32 pC 
single bunch  

Energy range 10 – 20 MeV 

Lattice F/D Doublet 

Circumference 16.57 m 

No of cells 42 

Normalised 
transverse 
acceptance 

 
3π mm-rad 



Bruno Muratori HB2010 October 2010 

 

 

EMMA Ring Cell 

Long drift 210 mm 

F Quad 58.8 mm 

Short drift 50 mm 

D Quad 75.7 mm F 
D 

Cavity 

210 mm 

110 mm 

Beam stay clear aperture 

D 

65 mm 

55 mm 

Low Energy 

Beam 

High Energy 

Beam 

•  42 identical doublets 

•Apart from injection 

and extraction 
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EMMA Ring Cell 

Long drift 210 mm 

F Quad 58.8 mm 

Short drift 50 mm 

D Quad 75.7 mm F 
D 

Cavity 

210 mm 

110 mm 

Beam stay clear aperture 

D 

65 mm 

55 mm 

Magnet Centre-lines 

Low Energy 

Beam 

High Energy 

Beam 

•  42 identical doublets 

•Apart from injection 

and extraction 
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EMMA Ring Cell 

Long drift 210 mm 

F Quad 58.8 mm 

Short drift 50 mm 

D Quad 75.7 mm F 
D 

Cavity 

210 mm 

110 mm 

Beam stay clear aperture 

D 

65 mm 

55 mm 

Low Energy 

Beam 

High Energy 

Beam 

Field Clamps 

Independent slides 

•  42 identical doublets 

•Apart from injection 

and extraction 
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EMMA Cell 

Ion 

Pump 

Girder 

Ion 

Pump 
Ion 

Pump 

Cavity 
FQUAD 

DQUAD 
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A 6 Cell Girder Assembly 

Ion 

Pump 

Cavity 
D Magnet 

F Magnet Location for diagnostics 

Girder 
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INJECTION & EXTRACTION 
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Injection line 

• Dogleg to extract beam from ALICE 

• Tomography (dual purpose) 

• Dispersive section to match to EMMA ring with 6 parameters but can 

be done with 11 variables & maybe more if needed 

BPM at dipole entrance

BPM at dipole 
entrance

Wall current monitor YAG/OTR screens x 3

YAG screen & 
vertical slit

YAG screen

YAG screen

Combined horizontal and vertical steering magnets x 4 

ALICE

Vertical Steering 
Magnet x 2 

Faraday cup
Beam dump

EMMA 

DoglegTomography sectionLast dispersive section
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Injection line 

• Different energies means different RF focusing & Twiss 

• Minimise energy spread (done & < 0.05 % at 15 MeV) 

• Done by straightening the bunch with ALICE linac off-crest 

– Yet more difference in RF focusing seen 

• Tomography provides fixed point (when matched correctly) 

– Need only keep first screen after that & can further vary 

quadrupoles to match into EMMA ring 

– Tomography can also be used for comparisons in extraction line 

where an identical straight will be present 

• Beam not perfectly centred in injection line but can achieve good 

injection nonetheless 
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Kicker Kicker Septum 65° 

Injection & Extraction 
• Large angle for injection (65
 

) and extraction (70
 

) very challenging !! 

• Injection/Extraction scheme required for all energies (10 – 20 MeV) 

• Many lattices and many configurations of each lattice required 

• Very limited space between quadrupole clamp plates for the septum 

and kickers construction 

Extensive 3D magnet modelling conducted to minimise the effect of stray 

septum fields on circulating beam 
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Kicker Kicker Septum 65° 

Injection Region 
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Injection 

Septum 
Kicker 

Kicker 

Septum 

Power supply 
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Septum Design 

Section view of septum in vacuum chamber 

Septum out of vacuum chamber 

Maximum beam deflection angle 77 degrees 

Maximum flux density in gap  0.91 T 

C core magnet gap height 22.0 mm 

Internal horizontal beam ‘stay-clear’ 62.5  mm 

Turns on excitation coil 2 

Excitation half-sine-wave duration 25 µs 

Excitation peak current  9.1 kA 

Excitation peak voltage  900 V 

Septum magnet repetition rate 20 Hz 

Rotation 

Translation 

•  Septum length ~ 10 cm 

•  Inject/Extracts from 10-20 Me 

•  For all lattice configurations 

•  Translation -3.2 to 11.5 mm 

•  Rotation – 0.4 to 0.7 degrees 
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Injection septum 

sin1sin

1
2

01-

E

E
EcelB effN

Δβmin<0.02 deg. leff =90.865 mm 

Concept   

Magnetic  measurements  

3D field map 

mm
B

dyyB

l
N

eff 4.91

BPM data analysis 

leff =90.865 mm 
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Kicker Magnet, Fast Switching 

Magnet length 0.1m 

Field at 10MeV (Injection) 0.035T 

Field at 20MeV (Extraction) 0.07T 

Magnet Inductance 0.25 H 

Lead Inductance 0.16 H 

Peak Current at 10/20MeV 1.3kA 

Peak Voltage at Magnet 14kV 

Peak Voltage at Power 

Supply 
23kV 

Rise / Fall Time 35nS 

Jitter pulse to pulse < 2nS 

Pulse Waveform ½ Sinewave 

Kicker Magnet Power Supply parameters 

With compact design and require: 

 

• Fast rise / fall times 35 nS 

• Rapid changes in current  50kA/ S 

• Constraints on pre and post pulses  

Prototype R&D led to a contract with 

APP for production units 
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Kickers 

Concept   
Field quality In-situ field probe 

Before installation 
Max. strength 0.007 Tm  

Timing jitter 1.7 ns 

Amplitude stability 4%. 

Fall time 58 ns 

Field variation 1.5% 

Effective length 130 mm 
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Measured Current Pulses 

from Kicker Magnet 

~55.5 ns = 1 revolution 

period 
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Kicker ringing 

• Only solution is to have 

multi-turn injection (~ 2) 

• Final kicker strength 

required is ~ the same 

• Ideal case without ringing 

• Can have few % ringing 

• Cannot have 10 % 
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Kicker ringing 

• Minimise orbit excursions essential 

• Two turn injection feasible over 

entire EMMA range of energies 

• Ideal beamexcursions: - 8 to 12 mm 

• Two-turn exc.: ~ -15 to 15 mm 
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Extraction 

• Do not yet extract the beam (additional level of complexity) 

• When we do, there should be plenty of diagnostics for further 

understanding the beam & what EMMA has done to it 

• Projected emittance, slice emittance, bunch length, energy spread, 

slice energy spread, electro-optic measurements 

BPMs at dipole entrance Wall current monitor 

YAG screens x 3

YAG screen, 
vertical slit

Combined horizontal and vertical  steering  magnets x 3

Faraday Cup

YAG screen

BPM

EO diagnostic

Vertical steering magnets x 2
Combined  horizontal and vertical steering magnet

Spectrometer  dipole,
BPM, YAG screen

Tomography, EO and spectrometer sectionFirst dispersive 
section

Matching section and possible TDC 
location
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COMMISSIONING 
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4 Sector Commissioning 

screen 

Many thanks for the efforts of all the team. 

 

 

screen 
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Realisation of EMMA August 2010 
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Complete Ring 

• Still have to look at raw BPM signal & only 12 BPMs are currently 

available at any one time 

First Turn Second Turn 

16th Aug 2010 
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Optimisation of injection  

 

• Use code to determine kicker 

strengths close to pragmatic 

strengths 

• Orbit kinks between cells are due 

to rotation of coordinate system 

Septum Kicker 

Angle at end of SEPT determined 

from BPM offsets with quads OFF 

Kicker 
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Time of Flight 

• Time of flight is determined by path 

length, not by speed 

• Use different magnetic strength as 

easier than retuning ALICE injector 

• Raw signal of one BPM 

electrode for time of flight 

measurement ALICE 

injector 

Fixed ALICE  Energy 

Variable EMMA fields 

Variable ALICE energy fixed 

EMMA fields 
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Time of Flight 

• Time of flight is determined by path 

length, not by speed 

• Use different magnetic strength as 

easier than retuning ALICE injector 

• Raw signal of one BPM 

electrode for time of flight 

measurement ALICE 

injector 

Revolution time @ equiv 18.5 MeV/c, equivalent 

momentum = 55.3+/-0.1 ns 

Fixed ALICE  Energy 

Variable EMMA fields 

Variable ALICE energy fixed 

EMMA fields 



Bruno Muratori HB2010 October 2010 

 

 

Betatron oscillation 

 tunes & dispersion 
           Beam position at 7 BPMs 

Tunes from fit  

Dispersion from average position 

Horizontal 

Vertical 

At 100% effective momentum 

(15.5 MeV/c)  

Horz disp =82mm 

Vert.  disp. = 3mm 

Consistent  to predicted values 
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Coasting beam no RF 

• Left and right 

electrode signal of 

BPM spaced with 

13 ns. 

Without rf, beam circulates more 

than 1000 turns 
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Synchrotron Oscillations 

• Still have problem tuning 

19 cavity phases 

• RF buckets around 

transition momentum still 

separated 

• Seen RF bucket & 

synchrotron oscillations 

inside it 

• Going to adjust each 

cavity phase separately 
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Next Steps 

• Commissioning now 

– LLRF system fully functional and tested at ALICE & off frequency 

– Verification of successful acceleration, inside/outside bucket 

• Characterisation 

– Tunes and ToF fn of E ~ 1MeV steps 

– Tune accelerator to match required lattice 

• “EMMA Experiment” 

– Acceleration 10 – 20 MeV  

– Resonance crossing 

 

– Detailed bench marking with codes 

– Scan aperture in phase space (both longitudinally and transversely) 

– Benchmark measured dynamic aperture with and without acceleration 

against the simulations 
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Summary 

• Design and construction phase of the project is complete 

• Injection / extraction complicated but workable solution 

• Commissioning of the full ring is underway: 

• Many 1000s of turns at fixed energy and for various energies 

• Time of flight measurements have been measured at various 

quadrupole settings and various equivalent energies 

• The LLRF system commissioning is at an advanced stage and ready 

for operating to show evidence of acceleration  

• Next start detailed characterisation of the accelerator 

 A key aim is to:- 

Verify this new concept works (accelerate !) 

Compare results with studies & gain real experience 
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Summary 

• Design and construction phase of the project is complete 

• Injection / extraction complicated but workable solution 

• Commissioning of the full ring is underway: 

• Many 1000s of turns at fixed energy and for various energies 

• Time of flight measurements have been measured at various 

quadrupole settings and various equivalent energies 

• The LLRF system commissioning is at an advanced stage and ready 

for operating to show evidence of acceleration  

• Next start detailed characterisation of the accelerator 

Apply lessons learnt to new applications! 

 A key aim is to:- 

Verify this new concept works (accelerate !) 

Compare results with studies & gain real experience 
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Thank you for your attention ! 

Please read paper for more details 


