Multi-Ribbon Beam Profile Monitor Using Carbon Graphite Foil for the J-PARC

 <u>Y. Hashimoto</u>, S. Muto, T. Toyama, D. Arakawa, Y. Hori, Y. Saito, M. Shirakata, M. Uota, Y. Yamanoi: J-PARC/KEK. Y. Sato: NIRS
S. Ohya: UBE Organic Specialty Materials Research Laboratory D. Ohsawa: Kyoto Univ. M. Mitani: MINOTOS Engineering T. Morimoto: MORIMOTO Engineering

Contents:

Graphite Foil Target Manufacturing Electronics Beam Measurement

Requirement for Target (One Passing Beam)

Requirement	Solution
Low Beam Loss	⇒Low density Material
	⇒Low Z Material
	<i>⇒Thin Foil</i>
Large Detection Area (over 200 ×200 mm ²)	
Uniformity of Electron Emissivity	
High Sensitivity	\Rightarrow Ribbon Type (segmented foil)
Heat Endurance	

For solving these requirements, a thin graphite foil was chosen.

Developed Target Material : Graphite (made by UBE)

Thickness: $1.6 \sim 2 \mu m$ Flexibility Self-supporting Large size :160 x 320 mm² max. Firing temperature : 2600 degree C

UBE's Graphite has larger Crystallite Adding toughness.

Layered oriented Benzene ring

Beam Energy Loss: at Graphite Target by 3GeV Beam

Parameter	Value
Atomic Number Z	6
Material Energy Loss @ 3GeV proton	2.0 [MeV.cm2/g/proton]
Target Thickness	2 [micron]
Total Energy Loss	0.8 [keV/proton]

Energy Deposition by 3-50 BT Beam at Graphite Target

Parameter	Value
Design Beam Intensity	4e13 [ppb]
Energy Deposition by bunch	5.1e-3 [J/bunch]
Energy Deposition by 8 bunch	4e-2 [J]
Estimated Temperature Raise	Several 10 ~ 200 [°C]

Endurance Test

Long-Run Test (Net. 11 months)

Beam: Proton Energy: 500 MeV Intensity: 2e12 ppb, 20Hz Beam Size : $45^{H} \times 15^{V} \text{ mm}^{2}$

High Temperature Test

Beam: Ne+ Energy: 3,2MeV Current: 3.0 μA Beam Size 8 mmφ

Total Particle Number: ≧5×10²⁰ ALIVE

* Electro-Conductive Binder remains :sticked tightly. Foil Temperature1400 ℃ after 67 min : BROKEN

Laser Cutting

- Preparation: A Foil was applied to electrode by the electro-conductive binder with any suitable tensions.
- •Laser Cutting
- * Third harmonic of Excimer laser ~250 nm^o
- * YAG ~ 1100 nm
- * Laser Spot Size : 30 micron
- * Laser Position Accuracy: ~ 10 micron

Cutting test

Alumina Frame: 410H×290V mm²

Printed Pattern Electrode :AgPt Connector: Au

•Radiation Resistance:

Epoxy (Base) + Ag Filler (Hybrid Grain) + polyimide+ Radical Trap

Low Outgassing: 1e-9 [Pa.m3/s/cm2])

Radiation Exposure Test by γ Ray \Rightarrow After 50 MGy exposed, Pulling Strength was still remained about 1MPa

Exposure Sample Cupper Plate(15×10 mm2) ⇒Pulling Test

Uniformity of Electron Emission from Carbon Graphite

Measurement Accuracy ⇔Uniform Emissivity

Beam Test: HIMAC C⁶⁺ 6MeV/u Beam Un-uniformity≦1 %

Test Samples : Ribbon Array Different Foil, Different Part

MRPM : Equipment

Vacuum : 5e-6 Pa

34 channels 1.5D coaxial cable assembly

The charge signal was transmitted via this cable assembly without amplifier in length of around 400m from equipment to electronics situated in a MR local-control room.

Three layered Shield Cross talk :≦- 60 dB or less (DC to 100 kHz)

Connector Box inside: Converted into head cable

Electronics : MWPM CAMAC Module

*diverting modules used at KEK-NML beam line

Module: 32CH 10Bit ADC HYBRID IC: AMP+INTEGRATION INT.Const: 30µsec INT.Gate: ~ 300µsec Auto Zeroing: ~ 1kHz (except INT. Time)

Beam Measurements @ 3-50 BT

Both are over plotted and fitted by arbitral five another time's measurement

<u>Deviation was small</u> <u>Good reproducibility.</u>

Plateau Curve

Plateau Curve: Compared with two intensity's

4e11 [ppb] (bunch length:100ns, beam size: 35H x 16V mm2) 1e13 [ppb] (bunch length:100ns, beam size: 80H x 30V mm2)

[Preliminary] Beam tail

1e13 ppb ×2bunch

Beam Core Part was not measured. Effectively sensitivity of electronics was increased up to 2000 times than core measurement..

[Preliminary] Time Transient Beam Profile

Beam Intensity: 1×10¹³ [ppb]

Demonstration ☆Signal intensity is adequately high, signal detection could be possible by oscilloscope directory.

☆From MRPM 9H's signals, eight channels were selected and connected to two same type of 500 MHz scopes.

Conclusion:

☆For high power beam as J-PARC, secondary-emission type beam-profile monitor using graphite ribbon was developed.

 \Rightarrow It could be measured <u>high intensity beam up to 1x10¹³ ppb</u>.

The effective length of the ribbon was over 200mm, and <u>un-uniformity of</u> <u>electron emission</u> yield from its surface was <u>1% or less</u>.

 \Rightarrow Since using thin as 2 micron of graphite thickness, <u>beam energy loss</u> per foil became smaller as <u>0.8 keV</u> at beam energy of 3 GeV. It amounts to only 4e-2 J loss per detector, in case of designed beam intensity of 4e13 ppb with 8 bunches.

 \approx Sensitivity became higher than ordinary wire target, beam tail test will be started soon.