Beam Instrumentation for High-Intensity, Multi-GeV Superconducting Linacs

Eliana Gianfelice Bruce Hanna Vic Scarpine Jim Steimel Bob Webber <u>Manfred Wendt</u>

ICFA-HB2010 Workshop September 27 – October 1, 2010

- High Beam Power SRF Linacs
- Beam Diagnostics Issues in SRF Linacs
- Fermilab's "Project X"
- Beam Test Facilities at Fermilab
- First Beam Measurements
- Examples of Beam Diagnostics R&D
- Summary

High Power SRF Linacs

	SNS	SPL	ESS	Myrrha	Project X
E [GeV]	1,3	5	2.5	0.6	3
P [MW]	3	4	5	2.4	3
I _{pulse} [mA]	42	40	50	n/a	n/a
I _{ave} [mA]	2.5	0.8	2	4	1
duty factor [%]	6	2	4	CW	CW
pulse lenght [ms]	1	0.4	2	n/a	n/a
rep. frequency [Hz]	60	50	20	n/a	n/a

- Goals of existing and planned SRF proton / H- linacs not listed: J-PARC (not SRF yet), FRIB (heavy ions), and others(?)
- In common: High beam power!
 - Requires precise control, stability, and verification of the guide fields.

SRF Linac Beam Diagnostics

- Essential beam instrumentation:
 - Beam trajectory
 - Beam position monitors (BPMs)
 - Beam phase, time-of-flight (TOF)
 - BPMs, WCMs, EO methods
 - Beam intensity
 - Toroid, wall current monitor (WCM)
 - Beam losses
 - BLM (ion chamber), TLM (Heliax)
 - Beam profile / emittance & halo
 - SEM (mulitwire), wire scanner, *Allison* scanner, slits, vibrating wire, laser diagnostics, e-beam scanner, IPM, etc.
 - Bunch profile & tails
 - *Feschenko* monitor, laser diagnostics, etc.

• SRF issues:

- High beam power -> low losses
 - Rule of thumb: <1 W/m
 - Residual losses of invasive diagnostics
- Requires non-invasive diagnostics
 - Cavities: cleanroom class 10
 - Contamination from dissociated wire material, etc.
- Cryogenic temperatures
 - Avoid moving parts in the CM
- Cryo-string sectioning
 - Warm diagnostics sections
- In the cryo-modules (CM): just BPMs, no other beam diag.!

Fermilab's Project X: A Multi-MW Proton Source

Project X

Project X SRF CW Linac Baseline Configuration

Project X Beam Test Facilities

• ILC Test Accelerator (ILCTA)

- Beam tests (electrons) of one or more ILC RF units, each consists out of 3 ILC//XFEL cryomodules, keeping eight 1.3 GHz β=1 elliptical TESLA-style cavities, plus quad package and cold button-style BPM.
- Electron beam diagnostics, only partially applicable for Project X.
- Project X Test Accelerator (PXTA) formally known as High Intensity Neutrino Source (HINS)
 - Beam tests (protons / H-) of a Project X "like" source
 - LEBT, RFQ, MEBT, 325 MHz SC spoke resonators, etc. up to some MeV
 - Ultra-broadband chopper
 - Beam optics, lattice optimization
 - Vector modulator concept (single klystron RF source on many cavities).
 - Various beam diagnostics

The PX test linac is equipped with a reconfigurable, movable diagnostics station at the end of the linac

First Beam Measurements Transverse Beam Profiles

First Beam Measurements Beam Intensity

- LEBT beam pulse
 - 18 mA (different charge states)
 - 500 µsec
- MEBT beam pulse
 - 4 mA (most H+), 50 µsec

RFQ Outputs VS RFQ Power

- RFQ bunched & unbunched beam
 - Toroir & BPM signal levels vs. RFQ RF power

First Beam Measurements Beam Energy

- Stability of the beam energy
 - Phase of BPMs I-Q signal
 - Q-signal tuned to 0⁰: phase

MEBT beam energy: 2.5 MeV

 TOF of the sparked RFQ between two button BPMs

Future Diagnostics Layout & Laser Emittance

4-stage Chopper MEBT Lattice Optimization

OFF

- Each kicker
 - 5 mrad
 - 750 volt
 - 0.5 m long
 - 150 mm gap
 - 1 nsec rise & fall time!
 - > 80 MHzrep. freq.

ON

Beam Diagnostics R&D: Beam Position Monitors

Beam Diagnostics R&D: Bunch Shape Monitor

Beam Diagnostics R&D: Fast Faraday Cup (SNS)

Courtesy C. Deibele / SNS

Beam Diagnostics R&D: Laser Diagnostics (LBNL)

- Narrow band lockin amp detects 1MHz modulated signal
- Laser reprate is locked to 325MHz from machine
- Galvo scan is triggered by macropulse event signal
- Upper components are in tunnel, lower are in a laser hutch

Courtesy R. Wilcox / LBNL

Beam Diagnostics R&D: Beam Halo Diagnostics

 Vibrating wire beam halo diagnostics

Courtesy S.G. Arutunian / J. Bergoz

- High power SRF linacs put additional constraints to beam diagnostics
- Test accelerators are important for hands-on experiments and beam studies
- Fermilab will test a large variety of proton / H- beam diagnostics, many in collaboration with other laboratories.