

Beam Induced Fluorescence Monitor Developments at GSI heavy Ion Facility

P. Forck, C. Andre, F. Becker, R. Haseitl, B. Walasek-Höhne

GSI Helmholtz-Zentrum für Schwerionenforschung, Darmstadt, Germany

HB 2010, Morschach

Non-destructive transverse profile determination:

- \blacktriangleright No influence to the beam \Rightarrow time dependence evolution detectable
- > No risk of material melting by beam power \Rightarrow save operation of the device

Outline of the talk:

- Technical realization for single photon detection generated by residual gas
- > Spectroscopic investigations for rare gases and N_2
- Energy scaling of signal strength and background, 1.4MeV/u<E_{kin}<750MeV/u</p>
- Conclusion

Expected Signal Strength for BIF-Monitor

Physics:

Energy loss of hadrons in gas dE/dx

- dE/dx [eV/m] 10 10⁻³ \Rightarrow Profile determination from residual gas
- Ionization: about 100 eV/ionization
- Excitation + photon emission: about 3 keV/photon

Ionization probability proportional to dE/dx by Bethe-Bloch formula:

 \Rightarrow Adaptation of signal strength

about 3 keV/photon
onization probability proportional to
BE/dx by Bethe-Bloch formula:

$$-\frac{dE}{dx} = \operatorname{const}\left(\cdot \frac{Z_t \cdot \rho_t}{A_t} \cdot Z_p^2\right) \left(\frac{1}{\beta^2}\right) \left[\ln\left(\operatorname{const} \cdot \frac{\gamma^2 \beta^2}{W_{\max}}\right) - \beta^2\right]$$
Target electron density:
Proportional to vacuum pressure

$$\propto 1/E_{kin} \text{ (for } E_{kin} > 1 \text{ GeV nearly constant)}$$

Strong dependence on projectile charge for ions A^{Zp}

Target electron density:

10⁻²

Proton energy loss

synchrotron

in 10^{-7} mbar N₂

using SRIM

Beam Induced Fluorescence Monitor: Principle

Detecting *photons* from residual gas molecules, e.g. Nitrogen N₂-fluorescent gas N_2 + lon $\rightarrow (N_2^+)^*$ + lon $\rightarrow N_2^+$ + γ + lon Vacuum gauge equally distributed 390 nm< λ< 470 nm Blackened walls emitted into solid angle Ω to camera single photon detection scheme 150mm flange Valve ton bear Viewport Lens, Image-Intensifier and CCD FireWire-Camera

Beam Induced Fluorescence Monitor: Principle

Detecting *photons* from residual gas molecules, e.g. Nitrogen N_2 + lon $\rightarrow (N_2^+)^*$ + lon $\rightarrow N_2^+$ + γ + lon Vacuum gauge 390 nm< λ< 470 nm Blackened wall emitted into solid angle Ω to camera single photon detection scheme 150mm Hange

Features:

- Single pulse observation possible down to $\approx 1 \ \mu s$ time resolution
- High resolution (here 0.2 mm/pixel) can be easily matched to application
- Commercial Image Intensifier
- Less installations inside vacuum as for IPM \Rightarrow compact installation e.g. 20 cm for both panes

Viewport

riewport size

N₂-fluorescent gas

equally distributed

Valve

BIF-Monitor: Technical Realization

Example BIF station at GSI-LINAC:

- > 2 x image intensified CCD cameras: photon $\rightarrow e^- \rightarrow amplification of e^- \rightarrow photons \rightarrow CCD$
- Optics with reproduction scale 0.2 mm/pixel
- ➤ Gas inlet + gauge

BIF-Monitor: Technical Realization

Example BIF station at GSI-LINAC:

- 2 x image intensified CCD cameras
- Optics with reproduction scale 0.2 mm/pixel
- Gas inlet + gauge
- Pneumatic feed-through for calibration
- Insertion length 25 cm for both directions only

Realization at other labs (e.g.BNL, CERN, FZJ): Segmented photomultiplier, CID or emCCD

Examples from Ion LINAC at GSI

Single pulse observation

4.7 MeV/u Ar¹⁰⁺ beam I=2.5 mA equals to 10^{11} particles **One single** macro pulse of 200 µs Vacuum pressure: p= 10^{-5} mbar (N₂)

Installed at several location along UNILAC

Time resolved observation

Variation *during* the macro pulse detectable: Switching of image intensifier (within 100 ns) \rightarrow 20 µs exposure window during macro-pulse

Further application: Background suppression by matching the exposure to beam delivery

Variation of N₂ Pressure over 6 Orders of Magnitude

Energy Scaling behind SIS18 at GSI

- Signal proportional to energy loss
- > Suited for FAIR-HEBT with $\geq 10^{10}$ ions/pulse

Energy Scaling behind SIS18 at GSI

P. Frock et al., HB2010, Morschach

Shielding Concept for Background Reduction

Effective neutron shielding: moderation and absorption

FLUKA simulation: Shielding of 1x1x1 m³ concrete block: 900 MeV/u BIF monitor 2m to beam dump $\Rightarrow \gamma \&$ n reduction 95 %

Fiber-optic bundle with \approx 1 million fibers:

- Commercial device for reduction of background and CCD destruction
- Image Intensifier and CCD in shielded area
- Iarger distance but same solid angl Experimental results:
- ➢No significant image distortion
- Low scintillation by n & γ inside bundle <u>un</u>-shielded: ≈30 % increase of background

Shielding Concept for Background Reduction

FLUKA simulation: Shielding of 1x1x1 m³ concrete block: 900 MeV/u BIF monitor 2m to beam dump $\Rightarrow \gamma \& n$ reduction 95 %

Fiber-optic bundle with \approx 1 million fibers:

- Commercial device for reduction of background and CCD destruction
- Image Intensifier and CCD in shielded area
- Iarger distance but same solid angl Experimental results:
- ➢No significant image distortion
- Low scintillation by n & γ inside bundle <u>un</u>-shielded: ≈30 % increase of background

Effective neutron shielding: moderation and absorption

\cdot e.g. 0.5 m concrete \rightarrow

CCD

Spectroscopy – Color and Fluorescence Yield

P. Frock et al., HB2010, Morschach

Spectroscopy – Profile Reading

P. Frock et al., HB2010, Morschach

Spectroscopy – Excitation by different Ions

For N_2 working gas the spectra for different ion impact is measured:

Results:

- Comparable spectra for all ions
- > Small modification due to N_2^+
- esults: Comparable spectra for all ions Small modification due to N_2^+ dissociation by heavy ion impact Results fits to measurements for proton up to 100 GeV at CERN Results fits to measurements
- \Rightarrow Stable operation possible for N_2

Care: Different physics for $E_{kin} < 100 \text{ keV/u} \Leftrightarrow v_{coll} < v_{Bohr}$

Different spectra measured

M. Plum et al., NIM A (2002), A. Variola, R. Jung, G. Ferioli, Phys. Rev. Acc. Beams (2007),

Systematic Errors → Movement in Beam's E-Field

BIF-profiles represent x_1 the location of photon-emission

- Gas-dynamics and lifetime of excited fluorescence states influence profile errors (not important present GSI beam parameter but for FAIR)
- Gas-dynamics defined by:
 - Lifetime e.g. N₂: 58 ns Xe: 6 ns
 - Mass and ionic charge
 - Dissociation-kinetics
 - For ions E-field of the beam

Xe as an alternative gases with 5-fold higher mass and 10-fold shorter optical lifetimes as N_2

Alternative Single Photon Camera: emCCD

Principle of electron multiplication CCD:

Parameter of Hamamatsu C9100-13

Pixel: 512x512, size16x16µm² Maximum amplification: x1200 Temperature of emCCD sensor: -80 °C Readout noise: about 1 e⁻ per pixel

P. Frock et al., HB2010, Morschach

Alternative Single Photon Camera: emCCD

1500 ICCD * factor 11.4 **Principle of electron multiplication CCD:** an 1200 V **EMCCD** EMCCD (bin) Electron Multiplying CCD Single Architecture pixe 900 Pixel Element Photodiode Sensor 900 900 300 Array Output Amplifier Node Charge Transfer Direction 0 -30 -30-15Ó Frame horizontal profile [mm] Transfer Extended Array Aultiplication Register Results: Suited for single photon detection x5 higher spatial resolution as ICCD Multiplication by avalanche diodes: more noise due to electrical amplification Electron Multiplying CCD Extended Multiplication \Rightarrow Acts as an alternative Masked Storage Area of Frame-Transfer CCD **Register Configuration** Parameter of Hamamatsu C9100-13 High Voltage Serial Pixel: 512x512, size16x16 μ m² Output Multiplication Register Amplifier e-Maximum amplification: x1200 Serial Register Temperature of emCCD sensor: -80 °C Readout noise: about 1 e per pixel Figure 3

P. Frock et al., HB2010, Morschach

Summary Beam Induced Fluorescence Monitor

- Non-destructive profile method demonstrated (single photon detection possible)
- > Independence of profile reading for pressures up to 10^{-1} mbar for N_2 , Xe, Kr, Ar
- > Operational usage at UNILAC started, pressure typ. $p < 10^{-5}$ mbar
- Shielding concept partly demonstrated
- Modern emCCD might be an alternative
- $> N_2$ is well suited: blue wavelength, good vacuum properties, high light yield
- > Xe is an alternative due to 10-fold shorter lifetime: less influence in beam's E-field
- > He is excluded as working gas due to wrong profile reproduction
- Future: Working gas pressure up 1 bar (i.e. mean free path << beam diameter)</p>
- Future: Investigation of shielding and radiation hardness of components
- Future: Investigation as target diagnostics for RIB, neutrons or antiprotons Acknowledgement: F. Bieniosek(LBNL), A. Ulrich (TU-München)

Thank you for your attention!

Spare transparencies

Investigations of light yield and wavelength spectrum for N_2 and rare gases.

Imaging Spectrograph installed behind UNILAC: Wavelength selective beam profile

Investigations of light yield and wavelength spectrum for N_2 and rare gases.

Imaging Spectrograph installed behind UNILAC: Wavelength selective beam profile

Beam parameter: S^{6+} at 5.16 MeV/u with 3.10¹¹ pps, 2000 macro-pulses, $p_{N2}=10^{-3}$ mbar

P. Frock et al., HB2010, Morschach

Spectroscopic Investigations for BIF of N2: Wavelength

Spectroscopic Investigations for BIF of N2: Profile Reading

P. Frock et al., HB2010, Morschach

Spectroscopic Investigations for BIF of N2: Light Yield

Spectroscopic Investigations for BIF of N₂ and He

Usage as a Diagnostics of a Gas Target

The properties of a gas target including beam overlap can be monitored: The light yield is proportional to beam current x gas density Example: UNILAC Gas stripper at 1.4 MeV/u

P. Frock et al., HB2010, Morschach

Pressure-Variation by 6 OM

