Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

Stefan Paret, Vladimir Kornilov, Oliver Boine-Frankenheim, GSI, Germany,

Thomas Weiland, Technische Universität Darmstadt, Germany

Outline

- FAIR and SIS-18
- Schottky diagnostics and beam transfer functions
 - -Effect of linear space charge
- Measurement of space-charge effects
- Simulation of space-charge effects
- Summary

2

FAIR at GSI

FAIR: experiments with high quality and high intensity beams

SIS-100 **SIS-18 SIS-18** becomes booster **SIS-300** UNILAC Increase of CBM beam intensity Arise of collective effects Super-FRS HESR \rightarrow Degradation of beam quality and particle losses RESR Low energy FLAIR CR \rightarrow strong space charge 100 m NESR P. Spiller, MOIC01

Low intensity Schottky spectrum

- Based on statistical fluctuations of local beam current and current dipole moment
- Non-destructive measurement of
 - Revolution frequency f_0
 - Fractional tune Q_f
 - Momentum spread
- Features
 - Longitudinal bands peaking at $f_0 m$
 - Side bands $P_0(f)$ centered around $f_0(m \pm Q_f)$
 - Width of sidebands σ_m^{\pm}

Schottky detection

Requires

- -Pick-up
- Sum amplifier for longitudinal spectrum
- Difference amplifier for transverse spectrum
- -Spectrum analyzer

Stefan Paret - Beschleunigerphysik

Transverse beam transfer functions (BTFs)

- BTF r₀(f) defined as ratio of beam response to excitation
- Requires
 - -Network analyzer
 - -Exciter (kicker)
 - -Pick-up
 - -Difference amplifier
- Alternative to Schottky diagnosis
- Stability analysis

Impedance and space charge

- Impact of transverse dipolar impedances
 - –Coherent tune shift ΔQ_{coh}
 - –Coherent dipolar instability with growth rate τ —if not Landau damped
 - -Impedance parameters

$$\Delta U_{coh} = \frac{\Delta Q_{coh} f_0}{\sigma_m^{\pm}} \text{ and } \Delta V = \frac{1}{\tau \sigma_m^{\pm}}$$

- (Direct) space charge
 - -Non-linear self-field, very difficult to model
 - → tune spread
 - -Linearized self-field (of K-V beam)
 - → incoherent tune shift

 $\Delta Q_{sc} \propto$

X

E_{sc}/

E_{sc}-

Diagnostics with collective effects

High intensity BTF [1] and Schottky band [2]

$$r(f) = \frac{r_0(f_{sc})}{1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})}$$

$$P(f) = \frac{P_0(f_{sc})}{|1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})|^2}$$

with $\Delta U_{sc} = \frac{\Delta Q_{sc} f_0}{\sigma_m^{\pm}}$ and $f_{sc} = f \mp \Delta U_{sc} \sigma_m^{\pm}$

[1] D. V. Pestrikov, NIM A, 578, 1, 2007; S. Paret et al., PRST-AB, 13, 2, 2010

[2] D. V. Pestrikov, NIM A, 578, 1, 2007; O. Boine-Frankenheim et al., PRST-AB, 11, 7, 2008

Diagnostics with collective effects

High intensity BTF [1] and Schottky band [2]

$$r(f) = \frac{r_0(f_{sc})}{1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})}$$

$$\frac{\text{deformation}}{\text{impedance and space charge}}$$

$$P(f) = \frac{P_0(f_{sc})}{|1 - (\Delta U_{coh} + i\Delta V - \Delta U_{sc})r_0(f_{sc})|^2}$$

with
$$\Delta U_{sc} = rac{\Delta Q_{sc} f_0}{\sigma_m^\pm}$$
 and $f_{sc} = f \mp \Delta U_{sc} \sigma_m^\pm$

[1] D. V. Pestrikov, NIM A, 578, 1, 2007; S. Paret et al., PRST-AB, 13, 2, 2010

[2] D. V. Pestrikov, NIM A, 578, 1, 2007; O. Boine-Frankenheim et al., PRST-AB, 11, 7, 2008

Diagnostics with collective effects

High intensity BTF [1] and Schottky band [2]

[1] D. V. Pestrikov, NIM A, 578, 1, 2007; S. Paret et al., PRST-AB, 13, 2, 2010

[2] D. V. Pestrikov, NIM A, 578, 1, 2007; O. Boine-Frankenheim et al., PRST-AB, 11, 7, 2008

Experimental setup

- Energy 11.4 MeV/nucleon
- Detection of
 - -lon number Nvaried from 2.5×10⁸ to 1.1×10¹⁰ Ar¹⁸⁺ ions
 - -Longitudinal Schottky Spectra
 - → Gaussian momentum
 - distribution
 - -Beam profiles

with ionization profile monitor \rightarrow emittance

• ΔU_{coh} , $\Delta V \ll \Delta U_{sc} \rightarrow$ only ΔU_{sc} taken into account

SIS-18

Measured Schottky bands

• Fit of
$$P(f) = \frac{P_0(f_{sc})}{|1 + \Delta U_{sc} r_0(f_{sc})|^2}$$

• Good agreement at low, medium and maximal intensity

Stefan Paret - Beschleunigerphysik

Measured BTFs

- Noise suppression via time gating
- Fit of *r*(*f*)
 - Good agreement at low intensity
 - Deviations at high intensity

Stefan Paret - Beschleunigerphysik

Measured stability diagrams

Stability diagram with space charge

$$\frac{1}{r(f)} = \frac{1}{r_0(f_{sc})} + \Delta U_{sc}$$

- Shifted as expected
- Approximately shaped as expected
- Disturbed by noise at high intensity

Measured space-charge parameter

- Estimation with beam parameters $\rightarrow \Delta U_{est}$
- Deformation of signal $\rightarrow \Delta U_{shape}$
- Position of signal (f_{sc}) $\rightarrow \Delta U_{shift}$ Consistency $\rightarrow \Delta U_{shift}$ - $\Delta U_{shape} = 0$
- ΔU_{sc} grows linearly with N
- Measured ΔU_{sc} larger than estimation
- Larger ΔU_{sc} for BTF

Stefan Paret - Beschleunigerphysik

Possible error sources

Beam parameters

- Uncertainty of beta function at profile monitor
- Degradation of detector components

<u>BTFs</u>

Beam of high intensity close to coherent instability

- Nonlinear response to excitation?
- Perturbation by resonance?

PIC simulations

- Random macro particle distribution in phase space
 Fluctuation of dipole moment → transverse Schottky spectrum
- Self-consistent field computation in 2D
- Options:
 - -Excitation with noise for BTF
 - -Impedance kicks
- Transverse profiles: K-V beam or Gaussian
- Maximal ΔU_{sc} = 2

Schottky simulations

Results for beam with Gaussian transverse profile

- ΔU_{sc} fitted to data
- Excellent agreement with data and expected ΔU_{sc}
- Similar results for K-V und Gaussian profiles

BTF simulations

Results for beam with Gaussian transverse profile

- ΔU_{sc} fitted to data
- Excellent agreement with data and expected ΔU_{sc}
- Similar results for K-V und Gaussian profiles

Simulated stability diagrams

- Good agreement with model
- More noise at high intensity

Simulation with impedance

Variation of ΔU_{coh} and ΔU_{sc} for direct comparison

Shift and deformation agree with model

Summary

Analytic linear space-charge model

• Different from dipolar impedance

Experiment

- Measurement of transverse Schottky spectra and BTFs
- Verification of model despite deviations in some parts
- Direct measurement of Q, ΔQ_{sc} und ΔU_{sc}

Simulation

- Transverse Schottky spectra and BTFs with space charge and imaginary impedances
- Excellent agreement with model

Thank you for your attention

Measured ΔQ

GSI