
1 

Van Kampen Modes for Bunch Longitudinal Motion 

A. Burov 

High Brightness Workshop 

Sep 28, 2010 



Content 

• Main equations 

 

• Steady state solutions 

 

• Integral equation for modes 

 

• Van Kampen modes: continuous and discrete spectrum 

 

• Classical plasma result 

 

• Single-harmonic RF results 

 

• Two-harmonics RF: BS mode 

 

• Two-harmonics RF: BL mode 

 

 

 

 

2 



Main equations 

  

3 

0)()(

),()(

)()(

)()()(

)()()()(

)()(
2

),(

rf

2

IF
Vf

I
t

f

dpIfz

dpIFz

zdzzWzzV

zdzzWzzUzU

zVzU
p

pzH Hamiltonian 

Steady state potential 

Perturbation of the potential 

Steady state linear density 

Linear density perturbation 

Vlasov equation 



Steady state distribution 
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  as if  wake=0  at  t=0 

Takes 2-10 min with my Mathematica code 



Existence and Uniqueness of Solution 

• For thermal equilibrium, F~exp(-H/T), the resulted Haissinski 

equation may have no solution for negative mass and space charge 

impedance.  

• However, we assume F(I), not F(H). It does make a difference. 

Formally, F(I) is normalized a priori, while F(H) normalization 

 

 

 cannot be given from the beginning, but solved jointly with the entire  

set of integral equations.  

 

• In other words, for given number of particles, rms momentum spread 

<p>  may have a minimum as a function of emittance I: too small 

temperatures may be impossible. 
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Example: H-P                           for space charge 
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Note minima for the max momentum and max Hamiltonian. 

 

That is why a solution always exists for action-distributions, as                          ,  

 

and not always for Hamiltonian-distributions, as                                .      
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Existence and Uniqueness of I-Solution 

• Theorem I (action domain):  

  

 If the impedance  grows not too fast,   

 

 

 there is at least one solution for the I-type steady state. This 

asymptotic is satisfied for all known impedances.  

 

In general, the solutions relate to the steady-state equation  

 

 

 

 

where                            is intensity parameter, J is the emittance. 

 

Except for a narrow-band impedance, the solution is unique.  
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Existence and Uniqueness of H-Solution 

• Theorem H (Hamiltonian domain):  

  

 If the impedance grows so slow that   

 

 

 there is at least one solution for the H-type steady state. This asymptotic 

is not satisfied for space charge (SC) and resistive wall (RW).  

 

In general, the solutions relate to the steady-state equation  

 

 

 

where               is intensity parameter, H is the average Hamiltonian. 

For  SC and RW, there are either no or 2 solutions. 
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Vlasov Equation 
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phase definition 

matrix elements 

Following Oide & Yokoya (1990) : 



Matrix Elements 
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Note: No bunch-to-bunch interaction here yet 

These equations solve the problem. 

 

CPU time ~ (number of azimuthal modes)^2.  

 

If the wake is not strong compared with the RF, azimuthal mode coupling can 

be neglected, at least as a first step analysis.   



Particle loss, emittance growth, or instability may happen because of: 

• Finite bucket capacity. For a full RF bucket, and effectively repulsive 

wake, the threshold is 0. 

 

• Azimuthal or radial mode coupling.  

– Azimuthal mode coupling requires rather high intensity 

– Radial mode coupling may happen either for non-monotonic 

distributions   F(I) , or for significantly asymmetric distorted potential 

well.  

 

• Loss of Landau damping (LLD). 

 

• Strong bunch-to-bunch interaction. 

 

• Improper tuned damper or feedback. 
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Integral Equation 
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Neglecting azimuthal mode coupling: 



Van Kampen modes for plasma 

 

• What are the eigenfunctions and eigenvalues for the Vlasov 

equation?  

 

 

 

 

• With                                        , it leads to  

 

 

 

• Eigenfunctions             can be normalized as                       . With 

that, an infinite set of solutions follows:    
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Van Kampen modes for plasma (2)  
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Here  v  is an arbitrary real number. The eigenfrequency =kv .  

This infinite set of eigenmodes was found for plasma oscillations in 1955 by a Dutch 

physicist  N. G. van Kampen. 

 

If the beam (or plasma) is stable, this continuous set of eigenmodes is complete.  

Any smooth initial condition can be expanded over that singular basis. The Landau  

damping results as phase mixing of the van Kampen modes.  

 

In case of unstable beam, the continuous spectrum is not complete. On top of that,  

there is a finite number of mode pairs (just one pair in our space charge example): 

 

 

Contrary to the continuous spectrum, these discrete modes are smooth functions.        

  

Van Kampen modes normally appear as numerical solutions of Vlasov equation.    
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Loss of Landau damping for van Kampen modes 
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For finite width of the distribution,                            , a discrete undamped mode can 

appear outside the continuous spectrum. The condition for that is       
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For the hard-edge distribution (left), the discrete mode appears at any interaction parameter.  

 

For the soft-edge case (right), there is a threshold for LLD.  



Van Kampen modes for a bunch 
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This is a linear equation for a spectrum of eigen-system. 

 

Similar problem for Langmuir oscillations in collisionless plasma was solved in 

1955 by van Kampen, who found that in general the spectrum consists of a 

continuous and discrete parts.  

 

The continuous modes are singular, their  spectrum coincides with the particle 

spectrum in the distorted potential well, and their decoherence describes Landau 

damping: 

 

 

 

 

Instead, the discrete modes are smooth regular functions. They are either unstable, 

or without Landau damping. The discrete spectrum not necessarily exists. 

 

At zero current limit, there are either no discrete modes, or they go infinitesimally 

close to the continuous spectrum.  
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Parabolic RF: LLD w/o threshold 

• For parabolic RF potential, there is always at least a single mode of 

the discrete spectrum: bunch motion as a whole. There are no 

resonant particles there, since all the incoherent frequencies are 

either suppressed or elevated by the potential well distortion.  

 

• Although                     , a slightest bunch-to-bunch talk would make 

this mode unstable. This is an example of loss of Landau damping 

(LLD). 

 

• Check for this mode is a good tool to verify the code.  

 

• In general, there is no that mode for other RF shape. 
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Units 
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Conventional eVs for the action are obtained from its dimensionless value  by  
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RW Interaction constant 

Below, the results are shown for a pure resistive wake, and 
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Why Landau damping may be lost 

• Particle interaction always acts stronger on the incoherent 

frequencies (potential well distortion), than on the mode frequencies. 

 

• An example: parabolic potential, where the first mode          does not 

depend on the impedance at all.  

 

• Thus, when all the particle frequencies are wake-suppressed, the 

highest-frequency mode jumps out of the continuous spectrum, and 

becomes discrete. For the SH RF, it means that lowest-amplitude 

particles are mostly excited by this mode.   
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Parabolic Potential Well Distortion 
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Same for SH 
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Same for BS 

  

23 

3 2 1 1 2 3

0.5

1.0

1.5

2.0

3 2 1 1 2 3

0.2

0.4

0.6

0.8

0.5 1.0 1.5
J

0.6

0.8

1.0

1.2

1.4



Same for BL 
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SH case, for the phase space density       
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Blue line – fit 

 

Power  9/4  agrees with naïve rigid-bunch model.  
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BS RF mode 
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SH and BS, bucket capacity is taken into account 
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For the Tevatron,  with                         at 53 MHz (Ng, Run II HB), the resistive impedance 

gives                  . For                     at the top energy, this corresponds to ~ 15 times below 

the red-line threshold. The inductive impedance is calculated ~ 2-3 times higher, so the gap 

may be expected to reduce. Also, the real distribution drops faster than HP. All that together 

may explain the observed dancing bunches. Computations for the specific Tevatron 

impedance are needed. 
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mode coupling ? radical LLD  

For  BL RF, the discrete mode excites mostly the tail particles.  

 

NB:  Low-current formal bucket capacity                    .  

LLD reduces is twice.     
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Stability areas for all the 3 RF modes 
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Next steps 

 

• Azimuthal mode coupling.  

 

• Space charge / inductive impedance. Comparison with Tevatron. 

 

• Multiple bunches and over-revolution wakes. 

 

•  Dampers and feedbacks. 
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Summary 

• Existence theorems for steady state are formulated for distributions 

in action and Hamiltonian domains.  

 

• Radical LLD concept is introduced and discussed. 

 

• Intensity-Emittance areas of availability are found for RW impedance 

and single harmonic, bunch shortening and bunch lengthening RF 

modes.  
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