

Beam Dynamics in the Facility for Rare Isotope Beams (FRIB) Linac

Qiang Zhao

Michigan State University

Morschach, Switzerland HB2010

FRIB Rare Isotope Beams

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB at MSU

Begun 2009 with estimated completion ~2018
Total Project Cost \$615M

FRIB Linac Layout – [1]

FRIB Linac Layout – [2]

FRIB Linac Lattice

4 cryomodules \rightarrow ouput \rightarrow ~1.4 MeV/u 4 β=0.041 80.5MHz QWRs, 2 solenoids

12 cryomodules→ output 16.6 MeV/u

8 β =0.085 80.5MHz QWRs, 3 solenoids

Linac Segment 1

Stripper foil: $33,34 \rightarrow 76,77,78,79,80$ for uranium

13 cryomodules → output 55 MeV/u

= solenoid

6 β=0.29 322MHz HWRs, 1 solenoid

8 β =0.53 322MHz HWRs, 1 solenoid

18 cryomodules → output >200 MeV/u

enoid Linac Segment 2 & 3

= cavity

FRIB Linac Performance

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Q. Zhao, 27 Sept. 2010,, Slide 7

FRIB Linac Longitudinal Acceptance

Large longitudinal acceptance

- Supports multi-charge state acceleration
- Reduces beam loss

Large acceptance to emittance ratios:

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

End-to-End Beam Simulations (1)

- •12 keV/u
- Initial 2 charge states in beam distribution

End-to-End Beam Simulations (1)

- •12 keV/u
- Initial 2 charge states in beam distribution

End-to-End Beam Simulations (2)

End-to-End Beam Simulations (3)

Charge state selection

- •16.3 MeV/u
- 5 charge states (U⁷⁶⁻⁸⁰⁺) selected
 - Efficiency ~84%

Production Target

- >200 MeV/u
- 5 charge states within 1 mm

End-to-End Beam Simulations (3)

- •16.3 MeV/u
- 5 charge states (U⁷⁶⁻⁸⁰⁺) selected
 - Efficiency ~84%

Production Target

- >200 MeV/u
- 5 charge states within 1 mm

16

End-to-End Beam Simulations (6)

Transverse emittance
Small growth (1.37x)
Spikes due to multicharge states in dispersion area

Longitudinal emittance • Large growth (29x) due to multi-charge states

- But small compared to acceptance
- Oscillation along linac due to multi-charge states

Error Specifications

Misalignment tolerances

Displacement (cold elements)	±1 mm, uniform
Displacement (warm elements)	±0.4 mm, uniform
Rotation	±2 mrad, uniform

RF error tolerances

Amplitude Fluctuation	±1.5% Gaussian (σ=0.5%)
Phase fluctuation	±1.5° Gaussian (σ=0.5°)

Stripper thickness variation ±10%, uniform

Linac Beam Loss Evaluations with RF Errors

- RF errors have minimum impact in transverse plane
- Acceptable longitudinal emittance growth (4.5x) due to rf errors

- No uncontrollable beam loss

Small beam envelope compared with aperture

Longitudinal emittance oscillation along linac due to multi-charge states

Beam Loss with RF Errors 2X Specification

Longitudinal phase space and acceptance at Segment 2 entrance

5 charge-state beam distribution (blue and pink)
- blue originally from 34+, pink originally from 33+

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Q. Zhao, 27 Sept. 2010,, Slide 17

Space Charge Effects important prior to RFQ

Space Charge Effects in LEBT before RFQ

Small effect for heavy ions

- For uranium beam, transverse and longitudinal phase space regained by slightly (~1%) increasing focusing strength and buncher voltages
- For light ions further study required
- Larger affect with smaller A/q

Summary and Conclusions

Conceptual design established for FRIB driver linac

- Room temperature front end
- 3 superconducting linac segments with 2 folding sections
- 1 beam delivery system

Beam dynamics simulations to conceptual level

- Development of robust lattice
 - » biggest challenge is multi-charge states necessary to meet beam power requirement (400kW)
 - » space charge effect largely non-issue
- End-to-end simulations including errors & error specifications determined

Beam dynamics simulations demonstrate design requirements met

- Beam energy: ≥ 200 MeV/u for all ions
- Beam power: 400 kW
- Uncontrolled beam loss: < 1 W/m

Future efforts

High statistic simulations, failure mode & effects analysis, and commissioning plans

Q. Zhao, 27 Sept. 2010,, Slide 20

Computing Codes

- Electromagnet Design
 - POISSON, OPERA → magnet
 - ANALYST, ANSYS, Omega3P → rf cavity
- Lattice Design
 - PARI → RFQ
 - Matlab_based \rightarrow linac with multi charge states
 - DIMAD \rightarrow beam optics & misalignment correction
 - COSY \rightarrow high order optics
 - TRACE3D \rightarrow beam optics
- Particle Tracking
 - Dedicated benchmarked parallel codes
 - RIAPMTQ → RFQ (LEBT & MEBT)
 - IMPACT \rightarrow ion source up to target except RFQ

FRIB Linac SRF Cavities

- Only 4 cavity types
- 1 frequency transition (between Linac Segment 1 and 2)

Туре	λ/4	λ/4	λ/2	λ/2	1- meter
β_{opt}	0.041	0.085	0.29	0.530	
f(MHz)	80.5	80.5	322	322	
Aperture (mm)	30	30	30	40	
V _a (MV)	0.81	1.62	1.90	3.70	
E _p (MV/m)	30.0	31.5	31.5	31.5	
B _p (mT)	53	71	75	77	
T(K)	4.5	4.5	2.0	2.0	

Beam Loss Evaluation – Double Errors

- A example of previous lattice
- With specified errors 0.6 billion particles
 - No uncontrolled beam losses
- Double specified errors 2 billion particles
 - 1000 seeds with 2 million particles each
 - 85.6% of seeds no uncontrolled beam loss
 - 12.8% of seeds loss < 1 W/m (design spec)</p>
 - only 1.6% of seeds loss > 1 W/m

85.6%

12.8%

1.6%