

The IFMIF-EVEDA Challenges and their treatment

P.A.P. Nghiem, N. Chauvin, M. Comunian, O. Delferrière, R. Duperrier, A. Mosnier, C. Oliver Amoros, D. Uriot

HB2010 Workshop, Sept 28th

IFMIF - EVEDA

One of the three projects Fusion Broader Approach between Japan & Europe

IFMIF: International Fusion Material Irradiation Facility

EVEDA: Engineering Validation Engineering Design Activity

BEAM DYNAMICS

The highest intensity The highest beam power

BEAM DYNAMICS

HB2010, Sept 28th

Conflicting issues !!

Work around SC effects:

- Enlarge extraction aperture
- Increase accelerating field (but < 100 kV/cm)
- shorten extraction length (because no compensation)
 → reduce number of electrodes

MIF - EVEDA

LEBT (1)

High current \rightarrow strong SC

Large $\sigma_{\text{I}} \not \rightarrow$ strong neutralisation

Competition must be finely studied Which is the winner ? Where ?

SolMAxP (CEA): SC potential map Main focusing field, Heavy gas ion(Kr), e⁻ repellers at entrance at exit

BEAM DYNAMICS

Conflicting issues !!

Optimisation method: highest transmission of LEBT-RFQ On-line: maximise current at RFQ exit

→ accelerate while focusing up to higher energy (5 MeV) \rightarrow longer RFQ

+ higher beam power + harmful loss-induced activation

Optimisation: limit losses spread losses on a biggest length, but on lower energy part →longer Gentle Buncher

RFQ

Multiparticle simulations with more than 10⁶ macroparticles For the MEBT and the SRF-Linac simultaneously Each of the macroparticle at the external border must be scrutinised Time consuming !

FMIF - EVEDA

MEBT + SRF-Linac (2)

Num.calc.not precised to 10⁻⁶ Machine not reproductible to 10^{-6} \rightarrow On-line fine tuning ... w diagnostics is mandatory and frequent.

High compactness \rightarrow Lack of room... for conventional diagnostics

Uncommon procedure:

- Match beam rms envelope, then
- Minimise extent of particles on the border
- \rightarrow "Halo matching" instead of "Beam matching"

That procedure can be applied on-line at the condition that microlosses can be measured the closest to the beam pipe, permanently & immediately MEBT + SRF-Linac

HB2010, Sept 28th

IFMIF-EVEDA - Accelerator System Group – Beam Dynamics BEAM DYNAMICS

HEBT

EVEDA HEBT:

- Adapt the beam size for measurements (Diag. Plate) \rightarrow many tunings to foreseen

- Expand the beam at the Beam Dump
- \rightarrow Issues: for each tuning, simultaneously
- avoid micro-losses
- limit power density at the Beam Dump
- > Many multiparticle simulations to performed

IFMIF HEBT:

Beam footprint at Lithium Target must be rectangular and uniform → Issues: Seen the beam power (2x5 MW) Pb of reliability, reproducibility and stability Remain to be studied

Diag Plate

9 MeV 1125 kW

Beam Dump*

FMIF - EVEDA

Once the external beam limit is perfectly minimised and regular, sometimes the emittance can literally blow up
→ Compromise between halo and emittance minimisations

Envelope equation: 2 competing terms

$$E_{x,y} = \frac{\varepsilon_{x,y}^2}{\sigma_{x,y}^3}$$
 and $SC = \frac{K}{2(\sigma_x + \sigma_y)}$

K is generalised perveance, continuous beam independent of particle distribution type

or
$$SC_3 = \frac{3K_3(1-f)}{(\sigma_x + \sigma_y)\sigma_z}$$

K₃ is generalised perveance, bunched beam dependent of particle distribution type (coef)

Coef is obtained by equalising SC and SC_3 at one position at MEBT entrance

Emittance-growth issue (2)

Conclusion

Simultaneous combination of

The highest intensity The highest power The highest space charge The longest RFQ

Unprecedented challenges →immediate treatment True "Laboratory" for studying physics of High Intensity Beam (Halo formation, Core-halo interaction Emittance growth, sudden particle loss)

Improve beam dynamics Improve tuning methods

IFMIF - EVEDA