

Facility for Antiproton and Ion Research

Radiation Hardness of FAIR Magnet Materials & Components

<u>Tim Seidl</u>, W. Ensinger (TU Darmstadt) E. Floch, E. Mustafin, A.B. Plotnikov, D. Severin, C. Trautmann (GSI) A. Golubev, A. Smolyakov (ITEP) R. Lopez, D. Tommasini (CERN)

Radiation Hardness of FAIR Magnet Materials

-Motivation -Irradiation Experiments -Results -Outlook

FAIR-Magnet Materials (SIS 100 Dipole)

Selection of Samples and Material Properties

•**Polyimide** (Kapton HN, Apical AV)

-dielectric strength

-thermal properties (low Temperature)

•Glasfiber Reinforced Plastics (GFRP, G11CR-type)

-dielectric strength

-mechanical properties

•"Voltage Breaker"

Low T-Sensors

Organic FAIR-Magnet Materials

Apical AV (Kaneka Texas) Kapton HN (Du Pont)

-G11CR type epoxy/fiber composite (Gatex GmbH)

The Insulated Helium Connector: - Helium transportation (from one coil to the yoke cooling channel) -stops the current - 20 Bar of pressure -Fiber reinforced plastic for SIS100 (produced by Babcock Noel) "Voltage Breaker"

"Voltage Breaker"

epoxy/fiber laminate (impregnated)

Specification: Leakage rate of 1e-9 mbar*l/s at a helium pressure of 30 bar.

Temperature Sensor for Low Temperature

(Cernox CX) from Lake Shore "Metal Oxy-Nitride Resistance"

Types of Irradiation-Experiments:

SIS 18: Xe ions ~ 280 MeV/u fragmented 1 GeV/u Uranium beam

Synchroton: protons 0.8 GeV

Fast neutrons ~ 800 MeV/u

T E P

Gammas from Co⁶⁰ -source

HHD-05-2008 Experiment ("Cocktail Beam")

Types of Irradiation-Experiments:

Protons, 21 MeV, 2E16 p/cm², 82 MGy

"Cocktail beam" ~6MGy

Ni, 11 MeV/u. 5E12 ions/cm², 25 MGy Ta, 11 MeV/u. 5E12 ions/cm², 80MGy (SRIM calculations)

Breakdown Voltage of Polyimide

Breakdown Voltage of Polyimide (angular dependence)

Breakdown Voltage of epoxy/fiber composite

Dielectric strength: Summary

What does that mean for SIS100 magnets?

more calculations and statistics needed:

-failure probability calculation

-"exact" beamloss calculations with angular distribution

-low T reference measurements

Insulation meets the specification up to high doses of gamma irradiation and "light" ion beams.

2*75 μ m + 2*50 μ m of polyimide should withstand: ~90 kV

Expected are about 1.3 kV (3kV as defined security limit).

Maybe more crucial: Fatigue of the coil structure support

G11 sample from "cocktail beam"-experiment

- The wedges of endspacers (SIS300) see a maximum stress of 60 MPa
- When the magnet is ramped the stress can decrease by 26 MPa
- The number of cycles is expected to be in the range of 1.4 10⁷ during 20 years of operation

Thermal Properties at low Temperature

Thermal Conductivity

needed values for quench calculations

Specific Heat at low Temperature of polyimide

Specific Heat at low Temperature of Epoxy/Fiber Composite

Thermal conductivity at low Temperature (polyimide)

28

Thermal Conductivity at low Temperature

thermal conductivity of irradiated polyimide decreases about 50% after 25 MGy of Ni-ions having 11 MeV/u.

Defined Hardness Tests

"Voltage Breaker" Test

Direct irradiation with Ar-Ions (400MeV/u) up to 0.9*10¹⁴ ions/cm² (8.9 MGy)

After one thermal cycle to 77K the leakage rate of the voltage breaker increases from 1e-11 mbar*l/s to 5e-5 mbar*l/s (at a helium pressure of 25 Bar)

9 MGy of Ar beam is too much for the voltage breaker:

Shielding will be foreseen

Shielding of the voltage breaker

Before the shield installation After the shield installation

Defined Hardness Tests

T sensors: First results on HHD-05-2008 Experiment

Calculated max. dose of "cocktail beam" ~6MGy

<u>Outlook</u>

-measurements of activated samples (~350) -mechanical tests -dielectric strength tests (ITEP beamtime 2008 160 MGy p+) ("Cocktail Experiment")

-Measurements of other magnet materials components:

-Formvar & Enamel insulated wires

-"ITER"-epoxy/fiber composite

Acknowledgment

Thanks

for your

attention