

Long Term Simulations of the Space Charge and Beam Loss in the SIS18 Experiment

G. Franchetti 30/9/2010 GSI, Darmstadt

Introduction

Nonlinear modeling of the SIS18

Experimental results and simulations

The truth in theory and the truth in the experiment

Trapping or Scattering ?

Conclusion/Outlook

Introduction

Space charge effects

Coherent

Coulomb forces feed back on the beam as whole changing beam properties

Incoherent

The Coulomb forces from the beam are created by a beam distribution which does not change

The incoherent force acts like a lattice force (approximation)

Relevant for long term storage (= hundreds of synchrotron oscillations)

Schematic of the study

Choice of the resonance

Systematic studies on the effect of the synchrotron motion on the bunched beam dynamics

Experiment parameters

Typical parameter of the measurements

Parameter			Value	Units
Energy per nucleon			11.28	MeV/u
Ion mass number			40	MC v/u
Ion charge state			18	
RE Harmonics			4	
RE Voltoro			-1	\mathbf{W}
Tratel and inland and have a	1.08		4 9.105	K V
Iotal particles per bunch	10-	×	3.125	
Gamma transition			5.01	-
Rigidity			1.077	Tm
SIS18 circumference			216.1	m
Average β_x			~ 8	m
Average β_y			~ 10	m
Revolution time			4.673	μs
Eta transition			0.9362	-
Synchrotron tune	10^{-3}	×	6.915	
Bunching factor			0.3357	
Rms momentum spread	10^{-3}	\times	1.3	
Bunch length 4σ			560	ns
Max $\delta p/p$ in the bucket	10^{-3}	×	7.4	
Horizontal emittance at 2σ			19	mm mrad
Vertical emittance at 2σ			14	mm mrad
Horizontal peak tune shift	10^{-2}	×	-4	
Vertical peak tune shift	10^{-2}	×	-4.5	

We have created 4 types of bunches:

- 1) low intensity coasting beams
- 2) high intensity coasting beams
- 3) low intensity bunched beams
- 4) high intensity bunched beams

Ideal situation: the incoherent tunespread should be the same for high intensity coasting beams and bunched beams

Scan at low intensity

$\Delta Q_x = -0.008 / - 0.011$

- 1) Chromatic correction sextupoles
- Possible 4th order nonlinearities (octupoles)

Model:

1 Sextupole driving the 3rd order resonance 1 Octupole to match the slope in beam loss

Beam loss appears titled \rightarrow indication of detuning effects

The effect of resonance $3 Q_x = 13$

Beam loss in a Gaussian distribution

Example of a Gaussian cut in energy

Beam loss stop band by 1 sextupole

Effect of an octupole on beam loss

The octupole acts as a source of detuning

Modeling of the nonlinear SIS18

Stability in phase space

Frequency map analysis

Only synchrotron nonlinearities = small effect

The effect of the space charge

Effect of the space charge on a coasting beam

The peak of the emittance shifts on the right because of the space charge detuning

The effect of space charge: a phase space view

Giuliano Franchetti

Origin of the emittance growth (incoherent)

The effect of space charge

Giuliano Franchetti

What happen with a Bunched beam ?

Low intensity

Chromaticity compensated with built-in control setting: not checked after set

Bunched beam at high intensity

Large emittance growth

Bunch length vs. beam survival

This effect happens only when the resonance takes place

Trapping or Scattering ?

Trapping happens when particles can follow the ``frozen fixed point"

In a static system

Trapping or Scattering ?

Dynamics in a slow varying system

The picture is complicated...

T depends on the longitudinal location at which the frozen island cross particles

Trapping or Scattering ?

$$T = \frac{\partial \tilde{x}_f(n) / \partial n}{Q_c \Delta \tilde{x}}$$

is applied for a longitudinal dynamics of $z=z_{max}\cos(2\pi Q_z n)$ where we take ${\rm z_{max}}=3\sigma_{\rm z}$

Conclusion

Experimental evidence:

Transverse emittance have a large growth only if high intensity and synchrotron motion are simultaneously present for a tune near the 3rd order resonance

Beam loss are accompanied by bunch shortening: effect happens always close the 3rd order resonance

Simulation benchmarking:

All 4 types of measurements have been reproduced with discrepancies probably due to the incomplete modeling of the SIS18 nonlinear lattice and to the self-consistence of the space charge calculations. Maximum beam loss are predicted with factor 2 accuracy

Mechanism:

Numerical analysis of the experiment suggests that the dominant regime is of scattering. However the prove of this effect does not come out univocally clear as the experiment shows always observable quantities. A model of the induced diffusion regime induced by scattering is necessary.

Outlook

Studies of semi-analitic models for space charge calculation should be developed and tested with dedicated measurements.

Tests on the scattering-induced diffusion should be devised: the effect of island scattering creates a nonlinear diffusion. Experiments with beam of different size might reveal a distinct time pattern in beam loss or emittance growth which demonstrate the scattering mechanisms.

Studies of longitudinal bunch shaping (2RF) to be compared with the present findings (1RF).

Thanks to

I. Hofmann, W. Bayer, F. Becker, U. Blell, O. Boine-Frankenheim, O. Chorniy, P. Forck, T. Giacomini, M. Kirk, V. Kornilov, T. Mohite, C. Omet, A. Parfenova, S. Paret, P. Schuett, S. Sorge, P. Spiller

