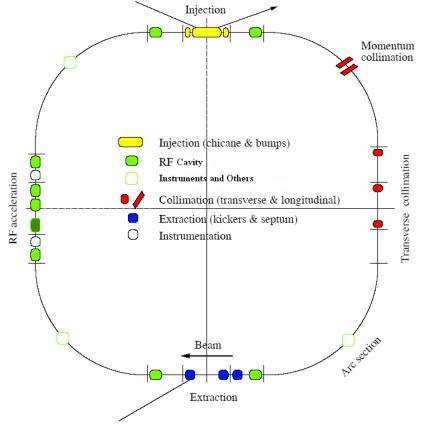
The Design of Beam Collimation System for CSNS/RCS

Na Wang Institute of High Energy Physics, Beijing, China

Sep. 27-Oct. 1, 2010 HB2010 Workshop

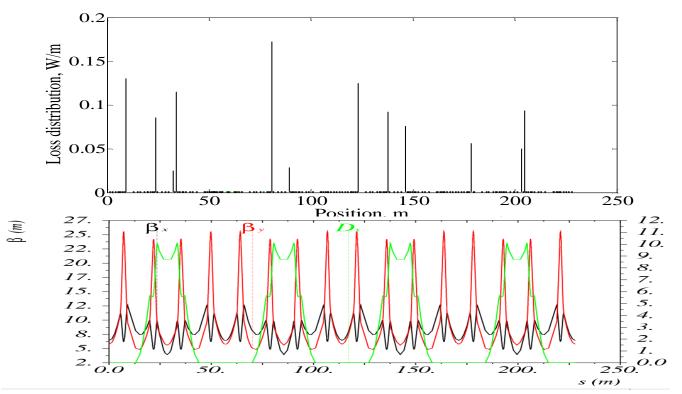

Outline

- Introduction
- Two-stage collimation system design
- Compare among different schemes
- Dependence of collimation efficiency on apertures
- Summary

RCS – 4 Fold Structure

• Four straight sections - beam injection, collimation, extraction, RF systems

Inj./Ext. energy	0.08/1.6 GeV	
Power	100 kW	
Beam current	62.5 μΑ	
Beam population	1.56 ×10 ¹³	
Hamonic number	2	
Repetition frequency	25 Hz	
Circumference	228 m	
Betatron tune	4.86/4.78	
Ring acceptance	540 π μm	

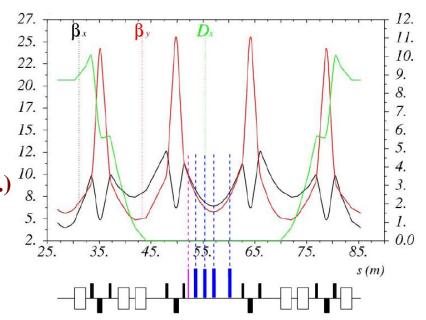

Motivation

- Localization of beam loss
 - High collimation efficiency
- Minimize uncontrolled beam losses
 - <1 Watt/meter for hands-on maintenance
- Beam halo cleaning
 - Small beam loss -> larger beam loss

Beam Loss Distribution (No Collimation)

• The beam loss distribution (ORBIT)

- Total loss 2×10⁻⁴, beam loss per component < 0.2 W/m
- The beam loss looks fine for an unperturbed machine, but worse performance are expected with errors or accidental cases



Two-stage Collimation System

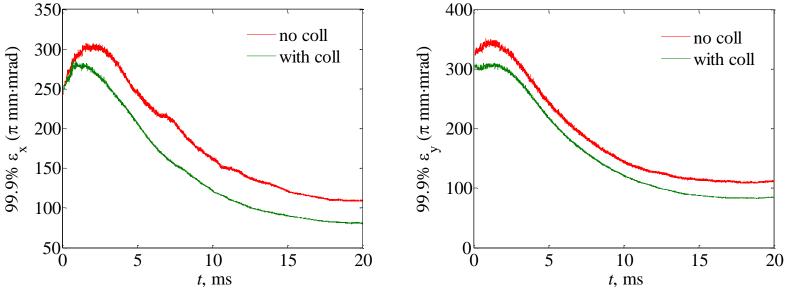
- Optics
 - Separate straight section for transverse collimation
 - Similar phase advance in *x* & *y* planes
 - One 11 meter and two 3.8 meter dispersion free drift space

3 (m)

- $\Delta \phi < 180^{\circ} (150^{\circ}, \text{ middle drift } < 90^{\circ})$
- One primary collimators
 - 4 movable scrappers
 - Thin tungsten, t = 0.17 mm
 - 350 π mm·mrad (first restrictive apert.)
- Four secondary collimators
 - Adjustable or fixed
 - Thick, t = 0.4 m, 400 π mm·mrad

Comparison Among Collimation Schemes

• Collimation with up-right collimator jaws

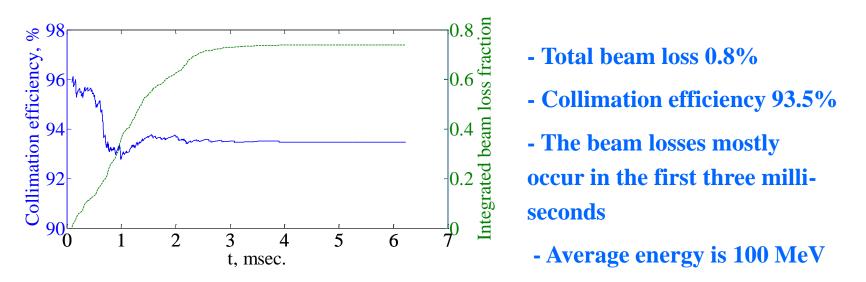

• Collimation with DC bump

• Collimation with fixed elliptical apertures

1. Collimation with Up-right Collimator Jaws

- - Primary \rightarrow four movable scrappers with 90° apart
- - Secondary → four movable vertical or horizontal jaws
- Beam halo cleaning

• The emittance is depressed by the collimation, and the extract beam emittance decreased about 25% in both planes.

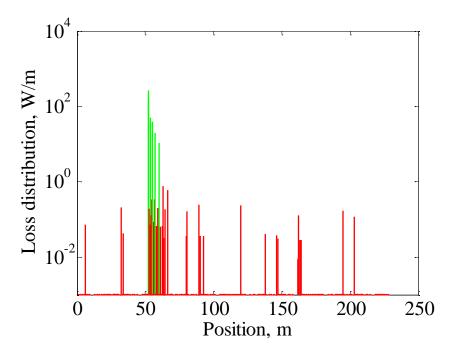


1. Collimation with Up-right Collimator Jaws

• Collimation efficiency

particles absorbed by the collimation system

total number of particles lost in the RCS

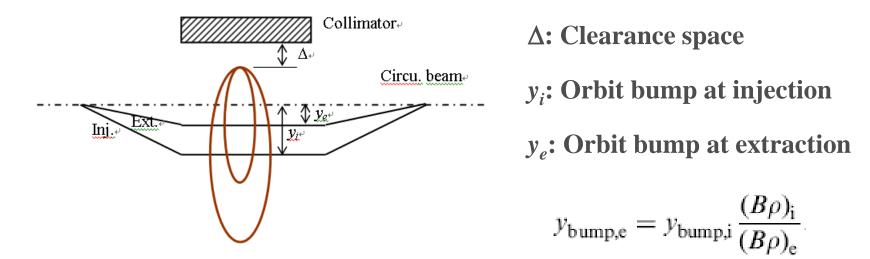


• The collimation efficiency varies with time as the impact parameter changes along with the expected emittance blow-up.

1. Collimation with Up-right Collimator Jaws

• Beam loss distribution

Region/Element	% of Scraped Beam Lost	
Scrapers	0.1	
First Secondary collimator	39.4	
Second Secondary collimator	30.4	
Third Secondary collimator	15.5	
Fourth Secondary collimator	8.1	
Total in the collimation section	96.2	

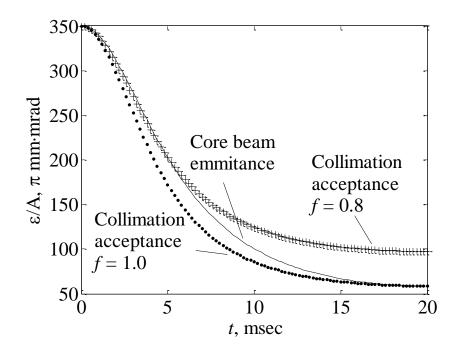

- The uncontrolled beam losses < 1 W/m.
- Over 96% of the beam lost within the collimation section.

2. Collimation with DC Bump

- Principle
- - In RCS, emittance shrinks during beam acceleration
- **- DC bump** \rightarrow **halo collimation in the early acceleration stage**

 \rightarrow smaller beam emittance at the extraction

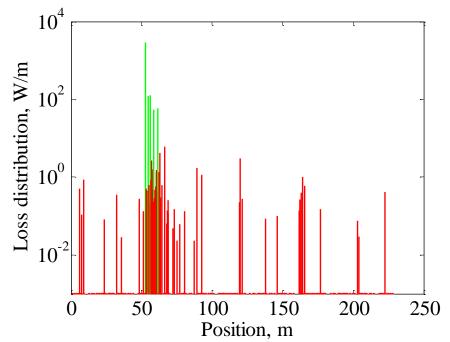
J.Y. Tang, Nucl. Instr. Meth. Phys. Res. A 575 (2007) 328-333.



2. Collimation with DC Bump

- Simulation
 - Vertical bump at primary collimator
 - Reduced bump factor f = 0.8
- Emittance
 - vertical $\rightarrow 20 \%$
 - horizontal \rightarrow 16 %

(compare to the


case without bump)

2. Collimation with DC Bump

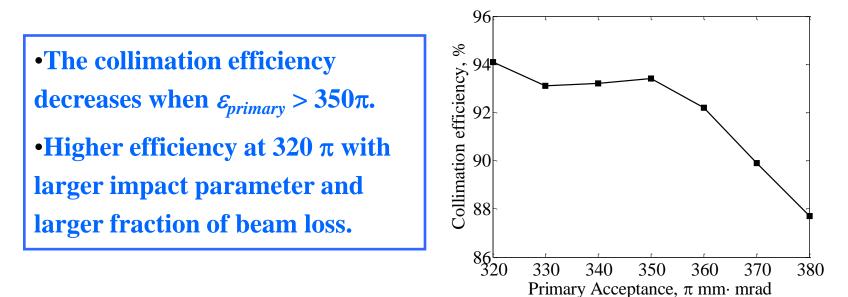
- Collimation efficiency
 - Total beam loss 1.7% with collimation efficiency of 90%

- Larger number of beam loss locations
- Exceed 1W/m at some position

3. Collimation with Fixed Elliptical Aperture

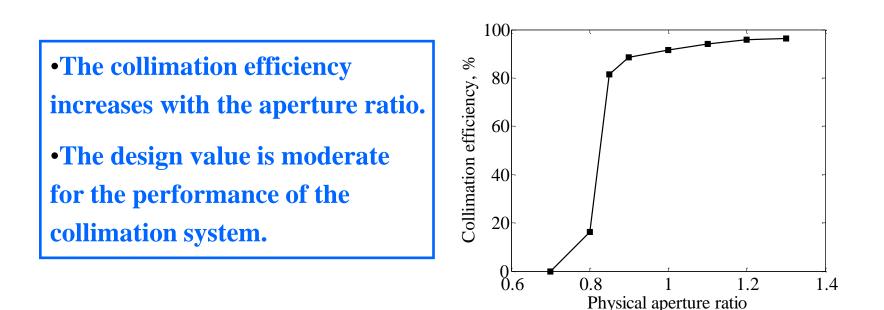
- - Primary: four scrappers placed 45° apart to approximate the elliptical aperture
- - Secondary: fixed elliptical aperture
- - Total beam loss 1.6% with resulting efficiency of 95.2%
- - Similar loss pattern as the scheme with up-right collimator jaws

Comparison Among Collimation Schemes


Schemes	Up-right jaws	DC bump	Fixed aperture
Collimation efficiency	93.5%	90%	95.2%
Total beam loss	0.8%	1.7%	1.6%
Loss in collimation section	96.2%	94.5%	97.7%
Uncontrolled loss	5.2E-4	1.7E-3	7.7E-4
Flexibility	flexible	flexible	less flexible
Extraction emittance, 99.9%	↓26% in x ↓24% in y	↓22% in x ↓31% in y	-
<1 W/m	yes	no	yes

- Collimation efficiency better than 90%.
- Scheme 1 has moderate collimation efficiency and smallest beam loss.
- Scheme 2 shows lowest collimation efficiency and highest beam loss, enables halo collimation at early acceleration stage and results in smaller beam emittance.
- Scheme 3 shows best collimation efficiency, and main drawback is less flexibility.

Dependence of Collimation Efficiency on Primary Acceptance


- The primary acceptance varies with a constant ratio between the acceptance of the primary and secondary collimators
- The collimation performance is strongly dependent on the acceptance of the primary collimators.

Dependence of Collimation Efficiency on Physical Aperture

• A large enough acceptance gap between the collimator and the ring physical aperture is necessary in order to ensure good collimation efficiency.

Summary

- Beam cleaning and collimation are necessary for beam loss localization for overall maintenance.
- A collimation system has been designed and studied for the CSNS RCS. The collimation efficiency is larger then 93%, and the maximum uncontrolled beam losses are less than 1 W/m along RCS.
- All results obtained so far refer to an unperturbed machine, works need to be done to include the magnetic errors, misalignments, COD, collective instabilities, et al...
- Accidental case should be studied in the future work.

Thanks for your attention!