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Beamline elements from Target E up to AHL 

 The muon production target E generates strongly divergent proton beam. 

 The collimator system composed of KHE2 and KHE3 protects the quadrupole magnets 

(QHG21 & QHG22) and the bending magnet (AHL) from direct proton beam exposure. 

 Gradual upgrade of proton beam power from the present 1.4 MW ( 590 MeV/2.3 mA ) 

towards 1.8 MW ( 590 MeV/3.0 mA ) is in plan.   

 Critical issue is the reliability at high proton beam power operation.  



Challenge to collimator system reliability 

 The collimator system KHE2 & KHE3 absorbs ~14 % of beam power.  

 For 1.3 MW (590 MeV/2.2 mA) beam power, the power deposition in KHE2 & KHE3 is 

expected to be ~190 kW, with the peak temperature exceeding 400 C. 

 The generally accepted limit for safe operation is the peak temperature below 50 % (405 

C) of the melting point of OFHC-Cu. 
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Working principles 

 KHE2 & KHE3 must provide the proton travel length longer than the projected stopping 

range of a 590 MeV proton in Cu. 

 Distribute the thermal loads from the proton stopping power uniformly along the teeth, in 

order to avoid excessive hot spot. 

 Water cooling via brazed water pipes made of stainless steel. 

MCNPX simulation: D. Kiselev 



Sensitivity analysis regarding collimator aperture I 

 Numerical simulations with the ray tracing program TURTLE (D. Reggiani). 

 For “x” larger than 20 mm, the particles directly lost onto the quadrupole magnet Q22. 

a = 160 mm 

 Taking engineering safety margin into account, the realizable optimal aperture is chosen 

to be the option with x = 10 mm.  



Sensitivity analysis regarding collimator aperture II-a 

 Fortran user subroutine for proton stopping power calculation is developed for CFD-ACE+. 

 MC simulations are computationally expansive and inadequate for optimization studies involving 

large number of geometry parameters. 

 Input: beam directional vector, grid connectivity, differential stopping power, beam current profile.  

 Output: Volumetric power source in W/m^3. 

 The FORTRAN subroutine assumes „zero‟ scattering angles of proton in Cu. 

 Smaller power deposition in teeth at beam entry region and in the outer ring region. 

Q [kW/mA] CFD-ACE+ MCNPX 

Teeth 

Collimator II 
64.85 64.76 

Ring 

Collimator II 
0.96 6.67 



Sensitivity analysis regarding collimator aperture II-b 

 Thermal calculations are done at 2 mA. 

 Type 1 shows better thermal characteristics:  

 The peak temperature decreases from 653 K to 552 K. 

 The power deposition decreases from 170 kW (14.4 %) to 122 kW (10.3 %). 

 Approximately 5 % higher proton beam transport to SINQ. 

Type 0: Present system Type 1: System with 12.5% larger aperture 



Sensitivity analysis regarding beam misalignments I 

 Numerical simulations with the ray tracing program TURTLE (D. Reggiani). 

 Combination of three different beam misalignment types:  

  Beam position dislocation at Target E [TE(x&y+2mm)] in “x” and “y” direction by 2 mm each. 

 Beam tilt at Target E [TE(xp&yp+2mrad)], in “x” and “y” by 2 mrad each.  

 KHE2 and KHE3 position and angle misalignments [C2(x& y+2mm,xp&yp+2mrad); 

C3(x&y+2mm,xp&yp+2mrad)], offset in “x” and “y” by 2 mm and 2 mrad each. 

 Sudden increase  of beam losses at beamline elements  is not expected for the collimator 

system with 12.5 % larger aperture. 



Sensitivity analysis regarding beam misalignments II-a 

 Thermal calculations are done for Type 0  and Type 1 collimator systems at 2 mA. 

 Five different beam misalignment types are studied. 

 Worst case is the angular beam misalignment in the x-direction by 1 mrad.  

 The maximum temperature of Type 1 collimator system is lower by ~100 K. 

 Type 1 has additional angular tolerance by 0.3 mrad or 30 s time margin.  



Sensitivity analysis regarding beam misalignments II-b 

Angle misalignment and power deposition balance
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 There is a correlation between the beam angle misalignment and the degree of power 

deposition imbalance in four quadrant volumes of KHE2.  

  The interlock limit can be correlated to the beam angle misalignment tolerance limit. 

Power deposition ratio: P_Quad2/P_Quad1
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Optimized collimator: Thermal aspect 

 More balanced distribution of thermal load distribution between KHE2 and KHE3. 

Present collimator system Optimized collimator system 

Type KHE2 [ kW ( % ) ] KHE3 [ kW ( % ) ] Total [ kW ( % ) ] 

Present system ( Type 0 ) 197 (77%) 58 (23%) 255 (100%) 

With 12.5% larger aperture ( Type 1 ) 130 (71%) 53 (29% ) 183 (100% ) 

Optimized system (Type 2 ) 128 (69% ) 58 (31% ) 186 (100%) 

The deposited beam stopping power balance between KHE2 & KHE3 



Optimized collimator: Material aspect 

 Material uncertainties of OFHC-Cu after heat treatment for water pipe brazing: 

 Prediction of the material reliability at high temperature collimator operations difficult. 

 Glidcop retains its mechanical strength up to 80 % of the melting temperature: 

 Predictable material behavior at high temperature collimator operations. 

 The glidcop collimators are 

expected to operate at 3 mA reliably, 

without thermomechanical failure!  

Type Max. Temp. [K] 

OFHC-Cu 

Max. Temp. [K] 

Glidcop  

Max. Yield 

Str. Index 

Type 0  825.8 851.3 1.23 

Type 1  674.3 692.3 0.67 

Type 2  556.7 568.5 0.54 

Temperature field at 3 mA. Yield stress index at 3 mA. 



Outlook: Irradiation effects  

  Uncertainties in the change of material properties under proton irradiation is an important 

issue to be solved, for OFHC-Cu and glidcop.  

J. W. Davis & G. M. Kalinin, J. of Nucl. Materials vols. 258-263 (1998) p. 323-328 



Outlook: Irradiation tests  

  STIP (SINQ Target Irradiation 

Program) probe: Proton irradiations on 

OFHC-Cu and glidcop samples are 

planned at the SINQ. 

 

  Proton irradiations at the Collimator 

beam entry and exit regions.  

  

 

  Detailed specification of the 

collimator system will be defined, once 

the uncertainties in material properties 

are solved. 

CAD illustration by M. Gandel 
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