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=17 Beamline elements from Target E up to AHL

+»+ The muon production target E generates strongly divergent proton beam.
+¢ The collimator system composed of KHE2 and KHE3 protects the quadrupole magnets
(QHG21 & QHG22) and the bending magnet (AHL) from direct proton beam exposure.
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+¢ Gradual upgrade of proton beam power from the present 1.4 MW ( 590 MeV/2.3 mA)
towards 1.8 MW ( 590 MeV/3.0 mA ) is in plan.
+¢ Critical issue is the reliability at high proton beam power operation.
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=(--]j» Challenge to collimator system reliability

+* The collimator system KHE2 & KHE3 absorbs ~14 % of beam power.
¢ For 1.3 MW (590 MeV/2.2 mA) beam power, the power deposition in KHE2 & KHE3 is
expected to be ~190 kW, with the peak temperature exceeding 400 C.

(

Photos taken by A.
Strinning & M. Gandel
during 2009-2010 shut
down; see Poster
MOPDG64 for details.

+»» The generally accepted limit for safe operation is the peak temperature below 50 % (405
C) of the melting point of OFHC-Cu.
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(= Working principles

“» KHE2 & KHE3 must provide the proton travel length longer than the projected stopping

range of a 590 MeV proton in Cu.
** Distribute the thermal loads from the proton stopping power uniformly along the teeth, in

order to avoid excessive hot spot.

MCNPX simulation: D. Kiselev

o

o s dE/dx of a 590 MeV proton in Cu
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+»» Water cooling via brazed water pipes made of stainless steel.
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(25 Sensitivity analysis regarding collimator aperture |

¢ Numerical simulations with the ray tracing program TURTLE (D. Reggiani).
¢ For “x” larger than 20 mm, the particles directly lost onto the quadrupole magnet Q22.

Beam Losses vs C2&C3 Aperture (2.2 mA Beam Envelope)
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Beamline Element

+¢ Taking engineering safety margin into account, the realizable optimal aperture is chosen
to be the option with x =10 mm.
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(25 Sensitivity analysis regarding collimator aperture ll-a

< Fortran user subroutine for proton stopping power calculation is developed for CFD-ACE+.

» MC simulations are computationally expansive and inadequate for optimization studies involving
large number of geometry parameters.

> Input: beam directional vector, grid connectivity, differential stopping power, beam current profile.
» Output: Volumetric power source in W/m*3.

Routine verification: CFD-ACE+ vs MCNPX
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g I Ring
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+»» The FORTRAN subroutine assumes ‘zero’ scattering angles of proton in Cu.
» Smaller power deposition in teeth at beam entry region and in the outer ring region.




== Sensitivity analysis regarding collimator aperture Il-b

+¢» Thermal calculations are done at 2 mA.

Type 0: Present system Type 1: System with 12.5% larger aperture
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¢ Type 1 shows better thermal characteristics:
» The peak temperature decreases from 653 K to 552 K.
» The power deposition decreases from 170 kW (14.4 %) to 122 kW (10.3 %).
» Approximately 5 % higher proton beam transport to SINQ.
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(25 Sensitivity analysis regarding beam misalignments |

¢ Numerical simulations with the ray tracing program TURTLE (D. Reggiani).

+»+» Combination of three different beam misalignment types:
> Beam position dislocation at Target E [TE(x&y+2mm)] in “x” and “y” direction by 2 mm each.
> Beam tilt at Target E [TE(xp&yp+2mrad)], in “x” and “y” by 2 mrad each.
» KHEZ2 and KHE3 position and angle misalignments [C2(x& y+2mm,xp&yp+2mrad);
C3(x&y+2mm,xp&yp+2mrad)], offset in “x” and “y” by 2 mm and 2 mrad each.

Beam + C2 + C3 Misalignment (C2&C3 aperture + 10mm)
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Beamline Element

++ Sudden increase of beam losses at beamline elements is not expected for the collimator
system with 12.5 % larger aperture.




== Sensitivity analysis regarding beam misalignments lI-a

¢+ Thermal calculations are done for Type 0 and Type 1 collimator systems at 2 mA.
¢ Five different beam misalignment types are studied.
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Beam misalignment and energy deposition balance
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+» Worst case is the angular beam misalignment in the x-direction by 1 mrad.
» The maximum temperature of Type 1 collimator system is lower by ~100 K.
» Type 1 has additional angular tolerance by 0.3 mrad or 30 s time margin.
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(= Sensitivity analysis regarding beam misalignments lI-b

¢ There is a correlation between the beam angle misalignment and the degree of power
deposition imbalance in four quadrant volumes of KHE2.
» The interlock limit can be correlated to the beam angle misalignment tolerance limit.

Angle misalignment and power deposition balance . .
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==

Optimized collimator: Thermal aspect

+2* More balanced distribution of thermal load distribution between KHE2 and KHE3.

Present collimator system

Optimized collimator system

The deposited beam stopping power balance between KHE2 & KHES3

Type KHE2[KkW (% )] | KHE3[KkW (%)] | Total[kW (%)]
Present system ( Type 0) 197 (77%) 58 (23%) 255 (100%)
With 12.5% larger aperture ( Type 1) 130 (71%) 53 (29% ) 183 (100% )
Optimized system (Type 2) 128 (69% ) 58 (31%) 186 (100%)
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==

Optimized collimator: Material aspect

+»» Material uncertainties of OFHC-Cu after heat treatment for water pipe brazing:

» Prediction of the material reliability at high temperature collimator operations difficult.
+ Glidcop retains its mechanical strength up to 80 % of the melting temperature:

» Predictable material behavior at high temperature collimator operations.

Temperature field at 3 mA. Yield stress index at 3 mA.
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Type Max. Temp. [K] | Max. Temp. [K] Max. Yield

+» The glidcop collimators are OFHC-Cu Glidcop Str. Index
expected to operate at 3 mA reliably,| | Type 0 825.8 851.3 1.23
without thermomechanical failure! | I’ . 674.3 692.3 0.67
Type 2 556.7 568.5 0.54




PAUL SCHERRER INSTITUT

a( = Outlook: Irradiation effects

< Uncertainties in the change of material properties under proton irradiation is an important
issue to be solved, for OFHC-Cu and glidcop.
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J. W. Davis & G. M. Kalinin, J. of Nucl. Materials vols. 258-263 (1998) p. 323-328
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(5 Outlook: Irradiation tests

CAD illustration by M. Gandel

s STIP (SINQ Target Irradiation
Program) probe: Proton irradiations on
OFHC-Cu and glidcop samples are
planned at the SINQ.

+«¢» Proton irradiations at the Collimator
beam entry and exit regions.

¢ Detailed specification of the
collimator system will be defined, once
the uncertainties in material properties
are solved.
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Many thanks to the audience and to the PSI collimator team colleagues:

D. Reggiani, M. Gandel, D. C. Kiselev, P. Baumann, M. Seidel, A. Strinning, S. Teichmann
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