

Optical Stochastic Cooling in Tevatron

Valeri Lebedev

Fermilab

Contributions from M. Zolotarev and A. Zholents

HD 2010 SEFT. 27 – OCT. 1. 2010 MORSCHACH / SWITZERLAND

<u>Objectives</u>

- Extension of Tevatron operation to 2014
 - Looks probable, no final decision
- Is there a possibility for a luminosity upgrade?
- Can the Optical Stochastic Cooling (OSC) help?
- Do we have a fast (2-3 years) of implementation OSC?

<u>Disclaimer</u>

- This talk answers the above questions -
 - It does not present a coherent proposal for Tevatron OSC
 - Some advances in theory were helpful

<u>Outline</u>

- Tevatron luminosity and its evolution
- Requirements to the cooling
- Optical stochastic cooling principles
- Damping rates and their optimization
- Kicker and optimization of its efficiency
- Requirements to the optical amplifier power
- Conclusions

<u>Tevatron Luminosity</u>

- All planned luminosity upgrades are completed in the spring of 2009
- From Run II start to 2009 the luminosity integral was doubling every 17 months
- Since 2009 average luminosity stays the same ~51 pb⁻¹/week (max ~75 ...)
- The average luminosity is limited by the IBS
 - Larger beam brightness results in a faster luminosity decay
- It is impossible to make a significant improvement (~2 times) without beam cooling in Tevatron
 - 10-20% is still possible (new tunes, larger intensity beams)

Luminosity Evolution with Aggressive Cooling

Requirements to the Beam Cooling

- Cooling time has to to be varied during the store independently for protons and pbars and transverse and longitudinal planes
 - Beam overcooling results in
 - Particle loss due to beam-beam (transverse overcooling)
 - Longitudinal instability (longitudinal overcooling)
- Simple estimate of required bandwidth based on (λ =2 W/N) results in ~200 GHz
 - Well above bandwidth of normal stochastic cooling
 - Only optical stochastic cooling has sufficient bandwidth
- Cooling times (in amplitude):
 - Protons: L 4.5 hour; \perp 8 hour
 - Antiprotons: L 4.5 hour; \perp 1.2 hour
- Tevatron has considerable coupling and all transverse cooling can be applied in one plane
 - It requires doubling hor. cooling decrement:
 - I.e. for protons $\lambda_s = \lambda_x = 4.5$ hour

Optical Stochastic Cooling

- Suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- Never tested experimentally
- OSC obeys the same principles as the $\sqrt[A_w]{}$ microwave stochastic cooling, but exploits the superior bandwidth of optical amplifiers ~ 10¹⁴ Hz
- Undulator can be used as pickup & kicker
- Pick-up and Kicker should be installed at locations with nonzero dispersion to have both ⊥ and L cooling.

MIT-Bates Proposal (2007 presentation @ FNAL)

F. Wang

2cm.

Damping Rates (logic behind calculations)

- The optics design will be significantly simplified if the damping rates can be expressed through beta-functions, dispersions and their derivatives
 - Damping rates are expressed in terms of matrix elements of the inverse pickup-to-kicker transfer matrix in previous publications
- The sequence is
 - Express transfer matrices (6x6) through Twiss-parameters at kicker and pickup
 - Find eigen-values and eigen-vectors of the ring without cooling
 - Using perturbation theory find damping decrements
 - Determine the cooling range
 - Correction factors for the finite amplitude particles

Transfer Matrix Parameterization

- Vertical plane is uncoupled and we omit it in further equations
- Matrix from point 1 to point 2

$$\mathbf{M} = \begin{bmatrix} M_{11} & M_{12} & 0 & M_{16} \\ M_{21} & M_{22} & 0 & M_{26} \\ M_{51} & M_{52} & 1 & M_{56} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x \\ \theta_x \\ s \\ \Delta p / p \end{bmatrix}$$

M₁₆ & M₂₆ can be expressed through dispersion

$$M_{16} = D_2 - M_{11}D_1 - M_{12}D_1'$$
$$M_{26} = D_2' - M_{21}D_1 - M_{22}D_1'$$

$$M_{51} = M_{21}M_{16} - M_{11}M_{26}$$
$$M_{52} = M_{22}M_{16} - M_{12}M_{26}$$

- Symplecticity ($\mathbf{M}^{\mathrm{T}}\mathbf{U}\mathbf{M} = \mathbf{U}$) binds up M_{51}, M_{52} and M_{16}, M_{26}
- Partial slip factor (from point 1 to point 2) is related to M₅₆

$$\Delta s_{1\to 2} \equiv 2\pi R \eta_{12} \frac{\Delta p}{p} = M_{51} D_1 \frac{\Delta p}{p} + M_{52} D_1' \frac{\Delta p}{p} + M_{56} \frac{\Delta p}{p}$$

• where we assume the ultra-relativistic case, i.e. v = c,

That results in
$$\eta_{12} = \frac{M_{51}D_1 + M_{52}D_1' + M_{56}}{2\pi R}$$

=> All matrix elements can be expressed through $\beta, \alpha, D, D', \eta_{1 \rightarrow 2}$

Damping Rates of Optical Stochastic Cooling

Longitudinal kick

$$\frac{\delta p}{p} = \kappa \sin\left(k\,\Delta s\right) = \xrightarrow{k\,\Delta s \ll 1} \kappa k \left(M_{1_{51}}x_1 + M_{1_{52}}\theta_{x_1} + M_{1_{56}}\frac{\Delta p}{p}\right)$$

Or in the matrix form: $\delta \mathbf{x}_2 = \mathbf{M}_c \mathbf{x}_1$

 $T_{1} \eta_{1} \xi_{1} \mu_{1}$ Kicker $\beta_{2} \alpha_{2}$ $D_{2} D_{2}^{2}$ Pickup $\beta_{1} \alpha_{1}$ $D_{1} D_{1}^{2}$ Kicker $D_{2} \alpha_{2}$ $D_{2} \alpha_{2}$

 M_1 - pickup-to-kicker matrix M_2 - kicker-to-pickup matrix $M = M_1M_2$ - ring matrix

Find the total ring matrix related to kicker location $\mu = \mu_1 + \mu_2$

$$\Rightarrow \qquad (\mathbf{x}_2)_{n+1} = \mathbf{M}_1 \mathbf{M}_2 (\mathbf{x}_2)_n + (\mathbf{\delta}\mathbf{x}_2)_n = (\mathbf{M}_0 + \mathbf{M}_c \mathbf{M}_2) (\mathbf{x}_2)_n$$

Perturbation theory yields that the tune shifts are:

$$\delta Q_{k} = \frac{\kappa}{4\pi} \mathbf{v}_{k}^{+} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{1_{26}} & -M_{1_{16}} & 0 & M_{1_{56}} \\ 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{v}_{k}$$

where the eigen-vector is determined by

$$\mathbf{M}_{0}\mathbf{v}_{k}=\lambda_{k}\mathbf{v}_{k}$$

Damping Rates of Optical Stochastic Cooling (continue)

Expressing matrix elements and eigen-vectors through Twiss parameters one obtains the cooling rates

$$\lambda_1 = -k\kappa \left(\frac{M_{1_{56}}}{2} - \pi R\eta_{12}\right)$$
$$\lambda_2 = -\pi k\kappa R\eta_{12}$$

The bottom equation can be directly obtained from the definition of the partial slip factor.

The above equations yield that the sum of the decrements is

$$\lambda_1 + \lambda_2 = -\frac{\kappa}{2} M_{1_{56}}$$

ooling Range

The cooling force depends on Δs nonlinearly $\frac{\delta p}{R} = \kappa \sin(k \delta s) = \kappa \sin(a_x \sin(\psi_x) + a_p \sin(\psi_p)), \quad \kappa = \frac{\Delta E_{\max}}{E}$

where $a_x \& a_p$ are the lengthening amplitudes due to \perp and L motions measured in units of laser phase ($a = k \delta s$)

The form-factor for damping rate of longitudinal cooling for particle with amplitudes $a_x \& a_p$

$$F_{2}(a_{x}, a_{p}) = \frac{2}{a_{p}} \oint \sin\left(a_{x} \sin\psi_{x} + a_{p} \sin\psi_{p}\right) \sin\psi_{p} \frac{d\psi_{x}}{2\pi} \frac{d\psi_{p}}{2\pi}$$

$$F_{2}(a_{x}, a_{p}) = \frac{2}{a_{p}} J_{0}(a_{x}) J_{1}(a_{p})$$

$$F_{1}(a_{x}, a_{p}) = \frac{2}{a_{x}} J_{0}(a_{p}) J_{1}(a_{x})$$

$$F_{1}(a_{x}, a_{p}) = \frac{2}{a_{x}} J_{0}(a_{p}) J_{1}(a_{x})$$

Damping requires both lengthening amplitudes be smaller $\mu_0 \approx 2.405$

Cooling of the Gaussian beam

Averaging the cooling form-factors for Gaussian distribution yields the same result as obtained by Zholents & Zolotorev

$$F_{1G}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = F_{2G}(k\sigma_{\Delta s\varepsilon}, k\sigma_{\Delta sp}) = \exp\left(-\frac{k^2 \sigma_{\Delta sp}^2}{2}\right) \exp\left(-\frac{k^2 \sigma_{\Delta s\varepsilon}^2}{2}\right)$$

But it ignores that the particles in the tails are undamped

<u>Beam Optics</u>

- Sum of decrements is proportional to the kicker-to-pickup M_{56}
 - It is determined by local optics \Rightarrow Stable
- λ_2 (long) $\propto \eta_{12}$ (partial pickup-to-kicker slip factor)
 - \Rightarrow Depends on the ring dispersion \Rightarrow highly sensitive
 - M_{56} for optimal cooling is

$$M_{1_{56}} = \frac{\mu_{01} \left(\lambda_1 + \lambda_2 \right)}{k \lambda_1 \left(\Delta p / p \right)_{\text{max}}}$$

- Smaller value an increase of the optical amplifier power
- Larger value loss of damping for large amplitude particles
 Tevatron cooling scenario implies:
 - $\sigma_p = 1.2 \cdot 10^{-4}$, $\varepsilon_n = 3.3$ mm mrad

For 4σ and 5σ cooling ranges of L & \perp motions, $\Delta L=5.3$ mm and $\lambda_1=\lambda_2$

Optical amplifier wavelength	2 μm	12 μ m
M ₅₆ [mm]	3.2	19.2
$2\pi R\eta_{12}$ [mm]	1.6	9.6
ΔD for 10% damping rate change [cm]	0.45	1.7

Beam Optics (continue)

Without focusing $M_{56} \approx 2\Delta L$ Focusing in chicane is required to obtain horizontal cooling • weak for 12 μm M₅₆=19.2 mm strong for 2 μm M₅₆=3.2 mm

Beta-functions and dispersions in the cooling chicane for optics optimized for 12 μ m (top) and 2 μ m(bottom) optical amplifiers; 6T dipoles, 5.3 mm delay

<u> Kickers (dipole & dipole wiggler)</u>

- Hor. polarized e.-m. wave focused at z = 0 to the rms size σ_{\perp}
- The beam is deflected in the x-plane by wiggler magnetic field
 - The beam energy change $\Delta \mathbf{E} = e \int (\mathbf{E} \cdot \mathbf{v}) dt$
- Dipole wiggler consists of positive and negative dipoles which at each end are followed by dipole of the same field for further separation of beams
 - Dipole length, σ_{\perp} and the beam centroid offset are adjusted to maximize the kick
 - σ_{\perp} is much larger than the beam transverse size

Comparison of Different Wiggler Types

- For large wiggler period the wiggler consisting of dipoles is easier to make than a usual harmonic wiggler
 - Little loss in efficiency is compensated by shorter length Helical dipole wiggler is $\sim\sqrt{2}$ time more efficient

Comparison of wiggler parameters for $\lambda_w = 12 \ \mu m$ and different wigglers (2.5 wiggles each)

Possible Choice of OSC Parameters

Damping time 4.5 hour, $N_p = 3 \cdot 10^{11}$, $n_b = 36$, $\sigma_p = 1.2 \cdot 10^{-4}$, $\lambda_2^{-1} = 4.5$ hour

 \Rightarrow Amplitude of single particle kick, $\Delta E_{max} = 0.66 \text{ eV}$, $\Delta f / f_{FWHM} = 6\%$

Wave length [µm]	Wiggler type/n _{wg/}	B [T]	Total length [m]	<i>G_{kicker}</i> [eV/√W]	P [W]
12	Toucture			26	125
6	dipolo ((N)(A)	4	N/A	18	133
2				14	71
12	Helical	2	40	56	28
	dipole/2.5			30	20
	Helical	8	44	132	5
	dipole/8				
6	Helical	6	38	110	3.5
	dipole/7				
2	Helical	elical 6 ble/12	36	116	1.05
	dipole/12				

• Peak optical amplifier power is ~100 times larger than the average one

Bandwidth is limited by optical amplifier

<u>Discussion</u>

- 2 μm wavelength
 - 2 μ m parametric optical amplifier is feasible (MIT-Bates)
 - 20-100 W (pumped by Nd: YAG laser)
 - Can be used with Tevatron dipoles being pickups and kickers (no wigglers), 70 W amplifier per beam
 - 2T helical wiggler (~20 m) requires ~12 W amplifier per beam
 - Optics stability and path length control are questionable
- 12 μm wavelength
 - Looks better for control of optics and the path length
 - Parametric optical amplifier pumped by 2-nd harmonic of CO_2 laser
 - Was not demonstrated yet
 - Attempt for RHIC was not quite successful
 - 5-10 W looks reasonable request
 - \circ But R&D is required to prove feasibility
 - Requires ~6-8 T helical wiggler (≥4 years)

<u>Conclusions</u>

- OSC would double the average Tevatron luminosity
- There is no fast way (2-3 years) to introduce OSC in Tevatron
 - looks possible for 5-6 years
 - Cooling installation requires a modification of beam optics
 - \circ CO straight is available
 - \circ New optics implies
 - new quad circuits & be new quads
 - shuffling existing and/or installation of new dipoles
 - Installation of wigglers?
 - \circ Considerable work
 - Fractional tunes should stay the same
 - Helices should not be affected
 - Antiproton beam has less particles but requires faster cooling
 ⇒ That results in approximately the same power
 - requirements for optics amplifier but its larger gain

Backup Viewgraphs

Longitudinal Damping Rate

For beam with n_b bunches and N_p particles/bunch the average laser power is

$$P_{laser} = n_b N_p f_0 \sqrt{\frac{\ln(2)}{\pi}} \frac{P_{peak}}{\Delta f_{FWHM}} = \frac{n_b N_p f_0}{\Delta f_{FWHM}} \sqrt{\frac{\ln(2)}{\pi}} \left(\frac{\Delta E_{max}}{G_{kick}}\right)^2$$

where G_{kick} is the kicker efficiency determined by the equation for monochromatic wave $\Delta E_{max} = G_{kick} \sqrt{P}$

⇒ For helical dipole with large number of wiggles

$$P_{laser} = 1.26 \left(\frac{1}{n_{wgl} \left(\Delta f / f \right)_{FWHM}} \frac{1 + K_u^2}{K_u^2} \right) \frac{n_b N_p \lambda_2^2 \lambda_w}{cf_0} \frac{\left(cp\sigma_p / e \right)^2}{Z_0} \right)^2}{\frac{K_u >>1, n_{wgl} \left(\Delta f / f \right)_{FWHM} = 1}{cf_0} \approx \frac{n_b N_p \lambda_2^2 \lambda_w}{cf_0} \frac{\left(cp\sigma_p / e \right)^2}{Z_0}$$

- Number of wiggles is limited by bandwidth: $n_{wgl} \leq 1/(\Delta f/f)$
- For efficient kick the undulator parameter $K_u \ge 2$
 - For larger magnetic field the kicker is shorter for same n_{wgl}
- \bullet In optimal setup \perp cooling does not require additional power
 - but requires an optimized optics

