

High Intensity Beam Physics at the University of Maryland Electron Ring

46th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams Sept 27-Oct 1, 2010

Institute for Research in Electronics and Applied Physics

Brian Beaudoin

Acknowledge: S. Bernal, T. Koeth, R. Kishek, I. Haber, D. Sutter,

P. O'Shea and M. Reiser

INSTITUTE FOR RESEARCH IN ELECTRONICS & APPLIED PHYSICS

1

Outline

- Introduction and Motivation: The University of Maryland Electron Ring (UMER)
- Studies of transverse dynamics
- Studies of longitudinal dynamics and the need for confinement
- Conclusion and future plans

UMER – Introduction & Motivation

0100010

Motivation: Investigating space-charge physics at long path-lengths, both transverse... & longitudinal....

System Parameters

Beam Length 5 ns(30 cm)-132 ns(8 m) Circulation Time 197 ns Beam Energy 10 keV

Aperture #	<i>r</i> ₀ (mm)	I (mA)	ε _n (μm)	<i>r</i> (mm)
1 "pencil"	0.25	0.6	0.4	1.5
2	0.875	6	1.2	3.2
3	1.5	23	2.0	4.9
4	2.85	78	4.3	8.7
5	3.2	104	4.9	9.9

Optics Layout

Outline

- Introduction and Motivation: The University of Maryland Electron Ring (UMER)
- Studies of transverse dynamics
- Studies of longitudinal dynamics and the need for confinement
- Conclusion and future plans

Tune Measurement / Calculation

Quad Current Space \rightarrow Tune Space

5th Turn - Transmitted Current

10th Turn - Transmitted Current

20th Turn - Transmitted Current

LATTICE FUNCTIONS

Betatron Function (6.0 mA) Measurement at QR33

$$\beta_{0X,Y} \approx \pm 4\pi \frac{\Delta v_{X,Y}}{\Delta k}$$

$$\beta = \frac{\beta_{0X,Y}}{Tune \, Depression}$$

Horizontal Dispersion Function for 0.6, 6.0 mA beams

- Exp. Av. Disp. 0.6 mA = 4.9 cm
- Exp. Av. Disp. 6.0 mA = 3.1 cm

Outline

- Introduction and Motivation: The University of Maryland Electron Ring (UMER)
- Studies of transverse dynamics
- Studies of longitudinal dynamics and the need for confinement
- Conclusion and future plans

Longitudinal Head and Tail Erosion (No Longitudinal Focusing)

Longitudinal Synchronization for Confinement

"Theoretical Aspects of the Behavior of Beams in Accelerators and Storage Rings

Unbunched and Bunched Beam

Longitudinal Mismatch Induced Waves

Estimation of Beam Size from Sound Speed Calculations of Induced Waves

Charge Preserved with Focusing

Concluding Remarks and Future Plans

- Observed linear resonances over wide range of parameters.
- Demonstrated longitudinal confinement of the low-current beam beyond a 1000 turns, exceeding design by a factor of 10.
- We are currently researching the optimization of confinement.

• Plans:

- Work around injection section for better matching.
- Exploring resonance scans with longitudinal confinement.
- Alternate longitudinal focusing solutions could minimize the number of wave induced distortions of the bunch shape.
- Next stage for longitudinal focusing is to move on to the 6 mA beam, increasing space-charge and thus the tune shift.