

for the Bilbao Accelerator Ion Source Test Stand

Ibon Bustinduy, Jean Paul Carneiro et al.

46th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams September 27 – October 1, 2010 Swiss Holiday Park, Morschach, Switzerland

H⁻ Source

Optimum Quad Effect

H⁺ Source

CPI S-Band CKPA 2.73GHz klystron 2.45HHz Magnetron on its way.

Plasma Chamber

TE₁₁₁ resonance condition at 2.7 GHz Diameter of 80mm and a length of 95.4mm

Field map of the magnetic induction [T]

0,020

0.000

0

0,05

Both calculations are represented at a different magnetomotive force but at ECR field at 150 mm.

0.1

0,15

Plasma electrode in non magnetic material

0,25

0.3

0.2

BN disks To enhance the production of electrons

LEBT:low energy beam transport

Electrostatic?

-SNS: two electrostatic einzel lenses

-No space charge compensation -pre-chopping and angular steering

Faded solid shapes depict the early 35-mA Startup LEBT.

Open contours depict the 65-mA Production LEBT

EVOLUTION OF THE LEBT LAYOUT FOR SNS*

J. Reijonen, R. Thomae, and R. Keller Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA

OR Magnetic?

- Switching between the two ion sources within less than an hour. (99.5% availability).

How many Solenoids?

trace3D

I from 0mA to100mA

Axisymmetric beam 🖌 Non-Axisymmetric beam 🗡

H+ -

H+ -

How many Solenoids? Any kind of beam ✓

2

œ

27

0

-

ო

PARTS

⋳⊕

17/05/2010

MATERIAL XXXX

RAWN E

JUT

HECKED B

JUT

DESIGNED B JLT

ENERGY

RAL LEBT SOLENOID

FOR FEM MODELLING

1:1 SIZE: A4 WEIGHT (kg):

AWING TITLE

RAWING NUMBER

Isometric view of the solenoid assemblyOn axis field for the solenoid with and without steering dipoles, for a current of 300 A.

Section of the nested dipoles

Section of the solenoid dipole assembly

Pressure Transducer

Maximum power of 9 kW per solenoid

Schematic of the cooling water connections to the solenoids, including the placement of temperature, pressure and flow transducers.

Cooling

Operating curves for a four solenoid system, the solenoids are connected in parallel and in each solenoid 1, 2 or 3 of the individual coils are connected in series, the blue trace corresponds to the temperature increase of the cooling water (righthand scale) for the corresponding flow rate

Cooling

1 coil in series

2 coils in series

Two examples of possible connection schemes, the individual coils in the solenoid are labeled 1 though 16. Top panel shows all coils connected to the manifold in parallel. Bottom panel shows sets of two coils connected in series, and the sets connected in parallel to the manifold.

Diagnostics

Beam | Dynamics

2D configuration search

2D configuration search

4D configuration search

Pepperpot data set

nemixrms: **0.57691** π .mm.rad

nemiyrms: 0.61818 π.mm.rad

4D Search through Realistic Pepperpot data Trace2D+TRACK

TRACK I=0mA b=[0.256-0.106-0.603-0.328]

TRACK I=10mA b=[0.302-0.141-0.049-0.341]

TRACK I=20mA b=[0.341-0.189-0.050-0.354]

TRACK I=30mA b=[0.378-0.215-0.140-0.354]

TRACK I=40mA b=[0.392-0.250-0.180-0.361]

TRACK I=50mA b=[0.392-0.266-0.180-0.370]

TRACK I=60mA b=[0.400-0.280-0.200-0.370]

TRACK I=70mA b=[0.400-0.290-0.220-0.375]

4D Search through Realistic Pepperpot data GPT

Space Charge Matching Algorithm Simple Search Algorithm: 4 nested cycles

- Bi=[0:∂B:0.4]
- Take ∂B=0.1T for instance, 5 possibilities per solenoid. 5⁴=625 total runs.
- Take ∂B=0.01T for instance, 41 possibilities → per solenoid. 41⁴=2,825,761 total runs.

784hrs! (1month)

Space Charge Matching Algorithm

- Each universe will be made by: [Bi-∂B,Bi Bi+∂B]
- A total of 3⁴=81 possibilities per node where ∂B will be adapting to the new solution.
- Much quicker convergence.

I=0mA b=[0.18438-0.16562-0.0875-0.31719]

I=70mA b=[0.4-0.26875-0.2125-0.36875]

I	Software	B1	B2	B3	B4	$T\alpha_x$	$T \alpha_y$	$T\beta_x$	$T\beta_y$	$\Delta n \epsilon_x$	$\Delta n \epsilon_y$	RFQ Transmission
(mA)		(T)	(T)	(T)	(T)			(m/rad)	(m/rad)	(%)	(%)	(%)
0	GPT	0.184	0.165	0.087	0.317	0.564	0.755	0.0377	0.0391	34.84	27.95	79.8
	TRACK	0.256	0.106	0.603	0.328	0.650	0.660	0.0309	0.0302	38.98	34.71	84.0
2	GPT	0.365	0.050	0.018	0.035	0.732	0.672	0.0336	0.0331	30.59	16.94	89.2
	TRACK	0.272	0.094	0.077	0.329	0.740	0.630	0.0312	0.0297	47.35	41.28	81.1
-4	GPT	0.353	0.0719	0.008	0.350	0.829	0.7661	0.0333	0.0323	34.43	26.34	87.1
	TRACK	0.282	0.101	0.079	0.331	0.810	0.610	0.0319	0.0299	54.05	42.93	80.0
6	GPT	0.350	0.100	0.025	0.350	0.956	0.789	0.0339	0.0364	39.22	29.34	85.9
	TRACK	0.292	0.086	0.108	0.327	0.750	0.520	0.0303	0.0285	65.77	47.86	76.9
8	GPT	0.331	0.131	0.008	0.350	0.878	0.728	0.0326	0.0327	51.33	39.82	82.9
	TRACK	0.300	0.117	0.076	0.336	0.660	0.690	0.0303	0.0292	44.01	77.43	73.8
10	GPT	0.333	0.145	0.042	0.350	0.911	0.685	0.0329	0.0346	58.74	36.00	81.3
	TRACK	0.302	0.141	0.049	0.341	0.750	0.660	0.0309	0.0293	55.73	70.86	73.1
20	GPT	0.339	0.195	0.089	0.353	0.822	0.523	0.0346	0.0353	79.55	35.71	72.5
	TRACK	0.351	0.189	0.050	0.354	0.850	0.600	0.0309	0.0334	60.75	49.50	75.8
30	GPT	0.340	0.234	0.098	0.362	0.769	0.397	0.0354	0.0404	72.97	36.98	67.0
	TRACK	0.378	0.215	0.140	0.354	0.510	0.350	0.0295	0.0325	54.05	52.78	68.9
40	GPT	0.308	0.275	0	0.384	0.613	0.243	0.0355	0.0602	68.65	46.80	54.3
	TRACK	0.392	0.250	0.180	0.361	0.180	0.190	0.0453	0.0308	55.73	54.43	54.3
50	GPT	0.295	0.281	0	0.390	0.425	0.125	0.0327	0.0687	83.21	58.95	43.5
	TRACK	0.392	0.266	0.180	0.370	0.010	0.040	0.0416	0.0300	75.82	69.21	46.1
60	GPT	0.375	0.244	0.195	0.355	0.394	0.298	0.0361	0.0568	68.32	52.35	43.2
	TRACK	0.400	0.180	0.200	0.370	0.130	0.280	0.0490	0.0430	95.91	84.00	40.2
70	GPT	0.400	0.269	0.212	0.369	0.076	0.251	0.0417	0.0648	95.70	97.63	35.1
	TRACK	0.400	0.290	0.220	0.375	0.000	0.220	0.0548	0.0570	105.96	93.86	31.8

Table 1: Measured parameters at the RFQ input for different ion currents. Only a representative fraction of the simulations is presented here. Note that I(mA) refers to the non-neutralized current.

Conclusions

- Obtained Results are similar
- It is more important to get a good match with **ß** than with **α**
- A good seed required, otherwise «weak focusing» & «strong focusing» are indistinguishable.

Summary

- Ion Sources
- LEBT Magnetic Design
- LEBT Cooling system
- LEBT Code/methodology comparison

Thank you

I. Bustinduy, D. de Cos, J. Feuchtwanger, J.L. Munoz, FJ. Bermejo, ESS-Bilbao, Spain S. Lawrie, D. Faircloth, A. Letchford, J. Pozimski, STFC/RAL, Chilton, Didcot, Oxon, UK S. Jolly, P. Savage, Imperial College of Science and Technology, UK J.Back, Warwick University, UK J. Lucas, Elytt Energy, Madrid, Spain J.P. Carneiro, IkerBasque Foundation, Chicago, USA

