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Outline 

• Experimental measurements of emittance growth and halo 
formation 

 

• Particle simulations to find the mechanism behind the 
emittance growth and halo formation 

 

• Cure for the emittance growth and halo formation and its 
experimental result 

 

We have experienced a significant emittance growth in DTL and halo 
formation in SDTL with high current operation. As an illustrative 
example for the comparison between simulation and experiment in 
J-PARC linac, we focus on this topic in this talk. 
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Main parameters for J-PARC linac 
• Ion species: Negative hydrogen ion 

• RF frequency: 324 MHz (972 MHz for ACS section) 

• Output energy: 181 MeV (400 MeV by adding ACS section) 

• Peak current: 30 mA (50 mA after front-end upgrade) 

• Pulse width: 0.5 msec 

• Repetition rate: 25 Hz 

• Chopper beam-on ratio: 56 % 

• Average current after chopping: 0.2 mA 

• Beam power: 36 kW (133 kW after upgrades) 
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Measured transverse emittance 
 

• 5 mA peak current 

       H    V 

 DTL exit  0.27 0.25 

 SDTL exit 0.23 0.27 

 A0BT exit 0.25 0.27  

• 30 mA peak current 

       H    V 

 DTL exit  0.42 0.36 

 SDTL exit 0.35 0.40 

 A0BT exit 0.37 0.40 
 

 Design  0.3  0.3  

* Normalized rms in mm•mrad.  

The listed emittances are calculated 
from rms beam widths measured 
with an array of wire scanners. 
 

The emittance is also measured at 
MEBT with a double-slit emittance 
monitor, and found to be 0.22 to 
0.25 both for 5 mA and 30 mA cases. 
 

We have significant emittane growth 
in DTL especially in the case of 30 
mA peak current. 
 

We don’t have significant emittance 
growth after DTL exit. 
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Measured profile at DTL exit 
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30 mA 
Beam profile is mostly Gaussian at DTL exit. 
Red circle: Measurement, Blue line: Gaussian fit 4 



Measured profile at SDTL exit 
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30 mA 

Clear halo is developed at SDTL exit while there is no 
significant emittance growth. 
Red circle: Measurement, Blue line: Gaussian fit 5 



Summary of observation 

• We have significant emittance growth in DTL in the case of 
30 mA peak current. 

• Beam profile at DTL exit is virtually Gaussian without beam 
halo. 

• We don’t have significant emittance growth after DTL exit. 

• Clear halo is seen at SDTL exit.  

We have tried to reproduce these characteristic features with 
IMPACT simulations to find a possible cause for it. 
 
In the simulation, we have tried various kinds of mismatch at 
MEBT between RFQ and DTL. 
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Degree of mismatch 

We need to assume 30 to 40 % transverse mismatch oscillation to reproduce the 
measured emitance growth. 
 

Transverse mismatch oscillation can be driven by both transverse and longitudinal 
mismatch at MEBT through space-charge coupling. 

DTL entrance DTL exit 

~30% mismatch 
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Typical case with transverse mismatch 
DTL exit 

In most cases, halo develops faster than the experimental observation with 
30 to 40 % mismatch oscillation. 
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A case with a longitudinal mismatch (I) 

However, with a certain longitudinal mismatch at MEBT, the onset of halo 
development has been delayed. 
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Virtually Gaussian at DTL exit.  

DTL exit 
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A case with a longitudinal mismatch (II) 

Clear halo is developed at the SDTL exit, while it is a little less pronounced 
than the experimental observation. 
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M211 A01B A02A A03B SDTL exit 
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Summery of findings in simulation 

• Based on the IMPACT simulation, we assume that the 

substantial emittance growth is caused by a certain type of 

longitudinal mismatch at MEBT. 

• As we lack the longitudinal beam diagnostics in MEBT, it is 

difficult to confirm this speculation with a direct 

measurement. 

• We have performed a tuning of MEBT buncher amplitude 

based on this finding. 
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MEBT buncher tuning 

Beam 

Scraper 

DTL1 

RFQ 

Buncher1 Buncher2 Chopper 

• In the tuning, the amplitude of two MEBT bunchers are tuned 
with a trial and error method so that the transverse emittance 
at the exit of DTL is minimized with the peak current of 15 mA.  

Bend 
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MEBT buncher tuning (cont.) 

• In this tuning, the buncher 1 amplitude is increased by 20 % and 
the buncher 2 amplitude is decreased by 10 % to minimized the 
emittance at the exit of DTL. Then, the normalized rms emittance 
at the exit of DTL was reduced as follows; 

– Horizontal  0.266 → 0.232 mm•mrad 

– Vertical   0.231 → 0.207 mm•mrad 
 

• Transverse halo is also reduced at the exit of SDTL as shown in 
the next a few slides. 
 

• It indicates that it is possible to make a longitudinal matching 
with transverse diagnostics by taking the advantage of the 
transverse-longitudinal coupling due to space-charge. 
 

• It also demonstrates that particle simulations are useful in giving 
a practical guideline in a real beam tuning.  
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Beam profile at SDTL exit (Horizontal, before buncher tuning) 

15 mA 
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Beam profile at SDTL exit (Horizontal, after buncher tuning) 

15 mA 
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Beam profile at SDTL exit (Vertical, before buncher tuning) 

15 mA 
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Beam profile at SDTL exit (Vertical, after buncher tuning) 

15 mA 
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Summary 
• In high current operation, we have experienced a significant 

emittance growth in DTL followed by halo formation in SDTL.  

 

• In a particle simulation, the mechanism behind the emittance 
growth and halo formation is identified as a longitudinal 
mismatch at MEBT.  

 

• The emittance growth and halo formation have been successfully 
mitigated by MEBT buncher tuning. 

 

• This example demonstrates that a particle simulation is capable 
of identifying the source of mismatch and finding the direction 
for the tuning in a real operation of high intensity linacs. 
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