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The Collimation Project Team 

& Close Collaborators 

• Results on phase I collimation are outcome of lot of work performed over last 8 years by the 

following CERN colleagues:  

 O. Aberle, J.P. Bacher, V. Baglin, G. Bellodi, A. Bertarelli, R. Billen, V. Boccone, 

A.P. Bouzoud, C. Bracco, H. Braun, R. Bruce, M. Cauchi, N. Hilleret, E.B. Holzer, 

D. Jacquet, J.B. Jeanneret, J.M. Jimenez, M. Jonker, Y. Kadi, K. Kershaw, G. Kruk, 

M. Lamont, L. Lari, J. Lendaro, J. Lettry, R. Losito, M. Magistris, A. Masi, M. Mayer, 

E. Métral, C. Mitifiot, R. Perret, S. Perrolaz, V. Previtali, C. Rathjen, S. Redaelli, 

G. Robert-Demolaize, C. Roderick, S. Roesler, A. Rossi, F. Ruggiero, M. Santana, 

R. Schmidt, P. Sievers, M. Sobczak, K. Tsoulou, G. Valentino, E. Veyrunes, 

H. Vincke, V. Vlachoudis, T. Weiler, J. Wenninger, D. Wollmann, …  

• Crucial work also performed by collaborators at: 

 EuCARD/ColMat partners, TRIUMF (D. Kaltchev), IHEP (I. Baishev & team), SLAC 

(T. Markiewicz & team), FNAL (N. Mokhov & team), BNL (N. Simos, A. Drees & 

team), Kurchatov (A. Ryazanov & team). 
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Outline 

• The Energy and Intensity Frontier at LHC 

• The LHC Collimation System 

• Collimation Setup 

• Performance: Simulation and Measurement 

• Outlook: Upgrades 

• Conclusion 
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Parameters for LHC Luminosity Production 
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Parameters for LHC Luminosity Production 

Ralph Assmann HB2010 

b*  = IP beta function (bx=by) 

en = norm. transv. emittance 

Np  = protons per bunch 

frev  = revolution frequency 

F = geometrical correction 

m0 = rest mass, e.g. of proton 

c = velocity of light 

constant 

Fixed tunnel length: low 

LHC revolution frequency 

makes it harder to produce 

lumi (compared to Tevatron) 

Beam-beam: 

Fine with no-

minal bunch 

charge! Can 

put more… 

At the moment set to 3.5 m in all 

IR’s (2m reached): better margins for 

operation, collimation and protection.  

Limit is ~1.2 m at 3.5 TeV. However, then 

very tight tolerances! 

Achieved 

normalized  

emittance 

40% below 

nominal! 

LHC luminosity is increased 

via stored energy  2.8 MJ! 

Go up by increasing number of 

bunches! 

Extrapolating from 2.8 MJ: No 

show-stopper 30 MJ (2010 goal). 

Go up not too fast & not too slow...  
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Stored Energy (Measure of Quench 

Potential) 
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80 kg TNT 
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LHC Parameters 
(for Reference) 

• Beam energy: 3.5 TeV frontier, 7 TeV in 2013 

• Bunch intensity: 1.1e11 nominal, can put more 

• Number of bunches: 104 

• Norm. emittance: 2.2 mm 60% of nominal 

• IP beta value: 3.5 m limited for larger margins 

• Stored energy: 6.2 MJ   frontier, 30 MJ in 2010/11 

• Peak luminosity: 3.5 x 1031 cm-2 s-1 factor 3 to go in 2010  

• Luminosity lifetime: ~25 h 

• Availability: ~85 % (max. weekly) 

• Time in physics: 40.2 % (max. weekly) 
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Proton Losses 

• LHC: Ideally no power lost (protons stored with infinite lifetime). 

• Collimators are the LHC defense against unavoidable losses: 

– Irregular fast losses and failures: Passive protection. 

– Slow losses: Cleaning and absorption of losses in super-conducting 

environment. 

– Radiation: Managed by collimators. 

– Particle physics background: Minimized. 

• Specified 7 TeV peak beam losses (maximum allowed loss): 

– Slow:  0.1% of beam per s for 10 s  0.5 MW  

– Transient:  5 × 10-5 of beam in ~10 turns (~1 ms) 20 MW 

– Accidental: up to 1 MJ in 200 ns into 0.2 mm2  5 TW 
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Quench Limit of LHC Super-Conducting Magnets 

 

 

Ralph Assmann HB2010 

Beam 

362 MJ 

SC Coil: 

quench limit 

5-30 mJ/cm3 

56 mm 

Nominal design at 7 TeV 
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Quench Limit of LHC Super-Conducting Magnets 
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Beam 

6.2 MJ 

SC Coil: 

quench limit 

15-100 mJ/cm3 

56 mm 

Situation at 3.5 TeV (on September 26, 2010) 

LHC beam is about 

60,000,000 times above 

quench limit of super-

conducting magnets 

(per cm3)! Of course, 

diluted… 

Not a single beam-induced 

quench at 3.5 TeV yet! 
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Energy Density (Measure of Damage Potential) 
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Damage 

limit 

copper 

Damage 

limit CFC 
(collimator) 
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Intensity Frontier at LHC:  

Role of Collimation 

• All other SC proton colliders had an important number of beam-induced 

quenches while pushing up to the MJ regime. 

• LHC reached 3 times the world record in stored energy per beam within 6 

months and without a beam-induced quench with stored beam.  

• How was this achieved? 

– Highly efficient, 4 stage collimation system in the LHC. 

– Tight collimation all through injection, ramp, squeeze and collision. 

– Catches safely all losses that occur while intensity is increased. 

– This includes “normal” losses (scattering, emittance growth, diffusion, 

…) and losses with equipment failures. 
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A Look at Record Fill This Weekend 

• Intensity increased by factor 2 to 1.11e13 protons per beam. 

 

 

 

 

 

 

 

 

 

• Peak luminosity: 3.5 × 1031 cm-2 s-1 
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First 6 MJ Physics: 17 hours, ~20% intensity loss 

Beam energy 

Beam Intensities 



Losses Around the Ring 
(3.5 TeV, End Record Fill 26.9.2010, t > 75 h) 
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Losses Around the Ring 
(3.5 TeV, End Record Fill 26.9.2010, t > 75 h) 
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Logarithmic scale! 
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Cleaning All the Time… 

• With high LHC beam intensity we see unavoidable beam losses 

constantly (see example for lifetime > 75 hours). 

• We can characterize losses. E.g. losses for beam 1 mostly in momentum 

cleaning  had a few RF cavity trips. Losses for beam 2 mostly in 

betatron cleaning  no RF trips for beam 2. 

• Essentially all losses intercepted at primary collimators in betatron 

and momentum cleaning insertions! 

• Very small leakage to outside cleaning insertions. 

• Some local losses occur in the experimental insertions (visible on 

logarithmic scale): luminosity-driven losses, p-p collisions. 

• In addition: rare beam dumps due to tiny, fast losses in middle of arc (10 

events so far  rare dust particles?). Not discussed here… 
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How Does Collimation Work and Does it Work as Predicted? 
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Outline 

• The Energy and Intensity Frontier at LHC 

• The LHC Collimation System 

• Collimation Setup 

• Performance: Simulation and Measurement 

• Outlook: Upgrades 

• Conclusion 
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The LHC Collimation System 

• Collimators must intercept any 

losses of protons such that the rest 

of the machine is protected („the 

sunglasses of the LHC“):  

 > 99.9% efficiency! 

• To this purpose collimators insert 

diluting and absorbing materials into 

the vacuum pipe. 

• Material is movable and can be 

placed as close as 0.25 mm to the 

circulating beam! 

• Nominal distance at 7 TeV:  

≥ 1 mm. 

Top view 
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The Carbon Fiber Collimator 
closest to beam: primary (TCP) and secondary (TCS) collimators 

Ralph Assmann 

Parameter Unit Specification 

Jaw material CFC 

Jaw length  TCS 

 TCP 

cm 

cm 

100 

60 

Jaw tapering cm 10 + 10 

Jaw cross section mm2 65 × 25 

Jaw resistivity μΩm ≤ 10 

Surface roughness μm ≤ 1.6 

Jaw flatness error μm ≤ 40 

Heat load kW ≤ 7 

Jaw temperature °C ≤ 50 

Bake-out temp. °C 250 

Minimal gap mm ≤ 0.5 

Maximal gap mm ≥ 58 

Jaw position control μm ≤ 10 

Jaw angle control μrad ≤ 15 

Reproducibility μm ≤ 20 

2003 Specification HB2010 19 

360 MJ proton 

beam 

1.2 

m 



Precisions Control & Movements 

Ralph Assmann 

Accurate stepping motors control 

jaw positions versus time! 
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TCSG 
(fiber-

reinforced  

graphite) TCT 
(tungste

n) 

Side view at one end 

Moto

r 

Motor 

Temperature sensors 

Gap opening (LVDT) 

Gap position (LVDT) 
Resolver 

Resolver 

Reference Reference 

Microphone  

Vacuum tank 

+ switches for IN, OUT, ANTI-COLLISION 

C
F

C
 

C
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Sliding table 
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System Design 

Momentum 

Cleaning 

Betatron 

Cleaning 

“Phase I” 

108 collimators 

& absorbers in 

1st generation 
(only movable 

shown in sketch) 
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Multi-Stage Cleaning & Protection 
3-4 Stages 
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Phase I in Tunnel (Radiation-Optimized) 

BEAM PIPES 

COLLIMATOR 

TRANSPORT ZONE 

COLLIMATOR CABLE TRAYS 

RADIATION-HARD CABLE PATH 

WATER FEEDS 

PHASE I/II  

WATER 

DISTRIBUTION 
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Outline 

• The Energy and Intensity Frontier at LHC 

• The LHC Collimation System 

• Collimation Setup 

• Performance: Simulation and Measurement 

• Outlook: Upgrades 

• Conclusion 

 
Ralph Assmann HB2010 27 



Collimation Setup 

• Collimation setup: Jaws are moved symmetrically 

around the beam until jaws create ~equal beam 

loss. Halo-based adjustment. 

• Info from beam-based calibration: Beam center, 

beam size variation from collimator to collimator. 

• Injection: beam center and calibrated beam size 

used to move collimators to +- N sigma around 

the beam. 

• Top energy: beam center and nominal beam size 

(beta beat < 20%) used to move collimators to +- 

N sigma around the beam. 

• Target settings determined from simulations (see 

table). 
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Collimation Setting Overview 
(in terms of b beam size, valid 12.6. – 30.8.2010) 

Ralph Assmann 

Ramp functions move smoothly from set 1 to set 2 during energy ramp! 

3.5 TeV setup took ~30 h of beam time with single bunch of 1e11 p. Time distributed over 10 days with ~1 

collimation shift per day. 
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Settings Calculation 

• The collimator settings are calculated (based on beam-based data) to: 

– Provide good efficiency. 

– Provide the correct collimator hierarchy (slow primary losses at primary 

collimators). 

– Protect the accelerator against the specified design errors. 

– Provide continuous cleaning and protection during all stages of beam 

operation: injection, prepare ramp, ramp, squeeze, collision, physics. 

– Provide maximum tolerances to beam and various collimator families. 

– Provide warning thresholds on all collimator axis positions versus time. 

– Provide interlock thresholds on all collimator axis positions versus time. 

– Provide interlock thresholds on all collimator gaps versus beam energy. 

• Complex problem with some 100,000 numbers to control the system. 

• Redundant calculation: time-dependent (ABP), energy-dependent (OP) 

Ralph Assmann HB2010 30 



Outline 

• The Energy and Intensity Frontier at LHC 

• The LHC Collimation System 

• Collimation Setup 

• Performance: Simulation and Measurement 

• Outlook: Upgrades 

• Conclusion 

 
Ralph Assmann HB2010 31 



Performance: Simulation and 

Measurement 
• First step for redesign of LHC collimation system: Setup of parallel 

simulation program and CPU cluster to numerically optimize the system. 

• Maximum runs: 20,000,000 protons tracked over 200 turns 

   108 billion proton-km 

• Imagine:  Simulating a proton that travels 700 times the  

   distance sun-earth in an accelerator! 

• Simulation included all magnetic elements and an aperture model with a 

resolution of 0.1 m!  

• Simulation includes halo proton generation, halo transport, proton-matter 

interaction and aperture checks for each proton every 0.1m! 

• Decisions taken based on simulations: material, length of jaws, reduced 

number of primary collimators by 20%, reduced number of secondary 

collimators by 25%, added tertiary collimators, … 

• AP simulations complemented by FLUKA energy deposition! 
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Side Remark: Impedance Issue 

Third look at impedance in Feb 03  

revealed a problem: 

F. Ruggiero 

• Review LHC collimator-induced impedance (not thought to be problem). 

• Surprise in 2003: LHC impedance driven by collimators, even metallic 

collimators. 

• LHC has an impedance that depends on the collimator settings! 

• Predicted in detailed simulations (E. Metral et al) and found as predicted. 

Stabilized with transverse damper and octupoles! 
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450 GeV: Cleaning Measurement 
Beam 1 – Horizontal (Qx crossing of 1/3 resonance) 

HB2010 

99.975% 

Loss at primary  

collimator 
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Measured 6 days after beam-based setup of collimators – no retuning… 
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450 GeV: Cleaning Measurement 
Beam 1 – Horizontal (Qx crossing of 1/3 resonance) 

HB2010 

99.975% 

Loss at primary  

collimator 
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Measured 6 days after beam-based setup of collimators – no retuning… 

Note losses on warm 

magnets and vacuum 

(red lines). 

Maximum if colli-

mation works well! ~ 

1/3 of beam ends 

here! Ralph Assmann 36 



450 GeV: Simulation 
(PhD C. Bracco 2008, p. 74) 

HB2010 

Ideal simulation, proton tracking, no showers 
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450 GeV: Cleaning Measurement 
Beam 2 – Horizontal (Qx crossing of 1/3 resonance) 

HB2010 

99.981% 

Loss at primary  

collimator 

Measured 6 days after beam-based setup of collimators – no retuning… 

Ralph Assmann 38 



450 GeV: Simulation vs Measurement 
(Data 2009 - PhD G. Robert-Demolaize 2006, p. 114) 

HB2010 

Notes: 

(1) As expected, 

additional losses 

from showers 

behind primary 

collimators. 

(2) 3x higher than 

simulated losses in 

LSS7L SC magnets. 

(3) 50x higher than 

simulated TCDQ 

losses  setup. 

(4) Additional loss 

on TCT in IR5: 

simulations at 450 

GeV had TCT out. 

(5) As expected 

losses in IR3  

correct simulation of 

energy loss in IR7 

collimators. 

1 

2 

3 

4 5 

Simulation with worst case design orbit error, proton tracking, no showers 
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Measured Cleaning at 3.5 TeV 
(beam1, vertical beam loss, intermediate settings) 

HB2010 Ralph Assmann 
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2m optics exposes IR’s as expected! Protected by tertiary collimators. 
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Simulated Cleaning at 3.5 TeV 
(beam1, vertical beam loss, intermediate settings) 
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Meas. & Sim. Cleaning at 3.5 TeV 
(beam1, vertical beam loss, intermediate settings) 

HB2010 Ralph Assmann 

IR8 

IR7 

Confirms expected 

limiting losses in SC 

dispersion suppressor: 
  

single-diffractive losses 
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Meas. & Sim. Cleaning at 3.5 TeV 
(beam1, vertical beam loss, intermediate settings) 

HB2010 Ralph Assmann 

IR8 

IR7 

Confirms expected 

limiting losses in SC 

dispersion suppressor: 
  

single-diffractive losses 
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Betatron Cleaning: Stability  

Over 10 Weeks 

Ralph Assmann 

3.5 TeV 
D. Wollmann et al 
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Outlook: LHC Collimation Upgrades 
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Cryo-Collimator 

For Dispersion-

Suppressor 

CERN 

Rotatable high Z jaw 

allows for multiple 

damaging beam hits! 

Collimator Jaws with 

In-Situ Pickup Buttons 

for Fast Setup 



Phase 2 Coll. With SPS Beam Drifts 
Standard BLM-based Method – Observing Jaw-BPM’s 

Ralph Assmann 

Jaw-BPM 

upstream 

Jaw-BPM 

downstream 

Set gap center 

Re-do BLM 

based set-up 

to follow 

beam center 

 

 Brings also 

back jaw-

BPM’s to 

previous 

reading! 

after 15 min 

Agreement BLM – jaw BPM: 

10 – 20 mm level 
  

Will solve many LHC issues! 

Plot: D. Wollmann 

EuCARD 
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Conclusion 

• The LHC collimation system has been designed, produced, installed and 

commissioned over the last 8 years! 

• Major effort to make it right, with strong support from various CERN 

departments and outside collaborators. Biggest and most complex (also 

most expensive) system built so far. 

• LHC collimation works with expected performance level and has shown 

an amazing stability over the last 2 months. Simulations were right! 

• Collimation and beam cleaning allowed the LHC in establishing the 

intensity frontier in 6 months (passing Tevatron, HERA, ISR, RHIC, …).  

• Not a single quench with stored beam! 

• Thanks to all the world experts helping with advice and support over the 

years. Our success reflects the rapid progress in the field. 

• Upgrades are being prepared to improve collimation by a further factor 5-

10 over next years. 
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Pointers to Talks & Posters 
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Other talks/posters on LHC 

collimation-related topics: 

S. Redaelli – Operational 

Performance of Collimation 

D. Wollmann – Collimation 

Upgrade 

M. Zerlauth – Machine 

Protection 

E.B. Holzer – Beam Loss 

Monitors 

A. Nordt – Beam Loss 

Monitors 

V. Kain – LHC Beam 

Commissioning 


