Collimation for LHC High Intensity Beams

Ralph Assmann

The Collimation Project Team & Close Collaborators

 Results on phase I collimation are outcome of lot of work performed over last 8 years by the following CERN colleagues:

O. Aberle, J.P. Bacher, V. Baglin, G. Bellodi, A. Bertarelli, R. Billen, V. Boccone,
A.P. Bouzoud, C. Bracco, H. Braun, R. Bruce, M. Cauchi, N. Hilleret, E.B. Holzer,
D. Jacquet, J.B. Jeanneret, J.M. Jimenez, M. Jonker, Y. Kadi, K. Kershaw, G. Kruk,
M. Lamont, L. Lari, J. Lendaro, J. Lettry, R. Losito, M. Magistris, A. Masi, M. Mayer,
E. Métral, C. Mitifiot, R. Perret, S. Perrolaz, V. Previtali, C. Rathjen, S. Redaelli,
G. Robert-Demolaize, C. Roderick, S. Roesler, A. Rossi, F. Ruggiero, M. Santana,
R. Schmidt, P. Sievers, M. Sobczak, K. Tsoulou, G. Valentino, E. Veyrunes,
H. Vincke, V. Vlachoudis, T. Weiler, J. Wenninger, D. Wollmann, ...

• Crucial work also performed by **collaborators** at:

EuCARD/ColMat partners, TRIUMF (D. Kaltchev), IHEP (I. Baishev & team), SLAC (T. Markiewicz & team), FNAL (N. Mokhov & team), BNL (N. Simos, A. Drees & team), Kurchatov (A. Ryazanov & team).

Outline

LHC Collimation Project CERN

- The Energy and Intensity Frontier at LHC
- The LHC Collimation System
- Collimation Setup
- Performance: Simulation and Measurement
- Outlook: Upgrades
- Conclusion

Parameters for LHC Luminosity Production

 $\frac{1}{4\pi \, m_0 c^2} \cdot f_{rev} \cdot F \cdot \frac{\mathbf{N_p}}{\beta^* \ \epsilon_{\mathbf{n}}} \cdot \mathbf{E_{stored}}$

Ralph Assmann

Parameters for LHC Luminosity Production

Fixed tunnel length: **low LHC revolution frequency** makes it harder to produce lumi (compared to Tevatron)

Beam-beam: Fine with nominal bunch charge! Can put more...

 $\frac{1}{4\pi m_0 c^2} \cdot f_{rev}$

LHC luminosity is increased via stored energy \rightarrow 2.8 MJ!

Go up by increasing number of bunches!

Extrapolating from 2.8 MJ: No show-stopper 30 MJ (2010 goal).

Go up not too fast & not too slow ...

 ϵ_{v}

constant

 $\beta^* = IP \text{ beta function } (\beta_x = \beta_y)$

- ε_n = norm. transv. emittance
- N_p = protons per bunch
- f_{rev} = revolution frequency
- *F* = geometrical correction
- m_0 = rest mass, e.g. of proton
- c = velocity of light

Ralph Assmann

At the moment **set to 3.5 m in all IR's** (2m reached): <u>better margins for</u> <u>operation, collimation and protection</u>.

Limit is ~1.2 m at 3.5 TeV. However, then very tight tolerances!

Achieved normalized **emittance** 40% below nominal!

5

LHC Parameters

(for Reference)

•	Beam energy:	3.5 TeV	frontier, 7 TeV in 2013
•	Bunch intensity:	1.1e11	nominal, can put more
•	Number of bunches:	104	
•	Norm. emittance:	2.2 μm	60% of nominal
•	IP beta value:	3.5 m	limited for larger margins
•	Stored energy:	6.2 MJ	<u>frontier</u> , 30 MJ in 2010/11
•	Peak luminosity:	3.5 x 10 ³¹ cm ⁻² s ⁻¹	factor 3 to go in 2010
•	Luminosity lifetime:	~25 h	
•	Availability:	~85 %	(max. weekly)
•	Time in physics:	40.2 %	(max. weekly)

Proton Losses

- LHC: Ideally no power lost (protons stored with infinite lifetime).
- Collimators are the LHC defense against unavoidable losses:
 - Irregular fast losses and failures: Passive protection.
 - Slow losses: Cleaning and absorption of losses in super-conducting environment.
 - Radiation: Managed by collimators.
 - Particle physics background: Minimized.
- Specified <u>7 TeV</u> peak beam losses (maximum allowed loss):

– Slow:	0.1% of beam per s for 10 s	0.5 MW
- Transient:	5×10^{-5} of beam in ~10 turns (~1 ms)	20 MW
 Accidental: 	up to 1 MJ in 200 ns into 0.2 mm ²	5 TW

Quench Limit of LHC Super-Conducting Magnets

Nominal design at 7 TeV

Beam

6.2 MJ

Quench Limit of LHC Super-Conducting Magnets

Situation at 3.5 TeV (on September 26, 2010)

SC Coil: quench limit 15-100 mJ/cm³

Not a single beam-induced quench at 3.5 TeV yet!

LHC beam is about 60,000,000 times above quench limit of superconducting magnets (per cm³)! Of course, diluted...

HB2010

Intensity Frontier at LHC: Role of Collimation

- All other SC proton colliders had an important number of beam-induced quenches while pushing up to the MJ regime.
- LHC reached 3 times the world record in stored energy per beam within 6 months and without a beam-induced quench with stored beam.
- How was this achieved?
 - Highly efficient, 4 stage collimation system in the LHC.
 - Tight collimation all through injection, ramp, squeeze and collision.
 - Catches safely all losses that occur while intensity is increased.
 - This includes "normal" losses (scattering, emittance growth, diffusion, ...) and losses with equipment failures.

• Intensity increased by factor 2 to **1.11e13 protons per beam**.

25-Sep-2010 19:36:45	Fill #: 1372	Energy: 3500 GeV	I(B1): 1.11e+13	I(B2): 1.10e+13
	ATLAS	ALICE	CMS	LHCb
Experiment Status	STANDB	NOT READY	STANDBY	STANDBY
Instantaneous Lumi (ub.s)^	-1 34	0.082	34.714	0.426
BRAN Luminosity (ub.s)^-	1 33.003	0.096	125.709	24.661

• Peak luminosity:

3.5 × 10³¹ cm⁻² s⁻¹

LHC Collimation

Project

CERN

Losses Around the Ring (3.5 TeV, End Record Fill 26.9.2010, $\tau > 75$ h)

0 – 27 km

Essentially all losses at collimators \rightarrow No beam dump or quench!

Losses Around the Ring (3.5 TeV, End Record Fill 26.9.2010, τ > 75 h)

 \rightarrow Details can be seen in logarithmic scale!

Cleaning All the Time...

- With high LHC beam intensity we see unavoidable beam losses constantly (see example for lifetime > 75 hours).
- We can characterize losses. E.g. losses for beam 1 mostly in momentum cleaning → had a few RF cavity trips. Losses for beam 2 mostly in betatron cleaning → no RF trips for beam 2.
- Essentially all losses intercepted at primary collimators in betatron and momentum cleaning insertions!
- Very small leakage to outside cleaning insertions.
- Some local losses occur in the experimental insertions (visible on logarithmic scale): luminosity-driven losses, p-p collisions.
- In addition: rare beam dumps due to tiny, fast losses in middle of arc (10 events so far → rare dust particles?). Not discussed here...

How Does Collimation Work and Does it Work as Predicted?

Outline

- The Energy and Intensity Frontier at LHC
- The LHC Collimation System
- Collimation Setup
- Performance: Simulation and Measurement
- Outlook: Upgrades
- Conclusion

The LHC Collimation System

 Collimators must intercept any losses of protons such that the rest of the machine is protected ("the sunglasses of the LHC"):

> 99.9% efficiency!

- To this purpose collimators insert diluting and absorbing materials into the vacuum pipe.
- Material is movable and can be placed as close as 0.25 mm to the circulating beam!
- Nominal distance at 7 TeV:
 ≥ 1 mm.

The Carbon Fiber Collimator

closest to beam: primary (TCP) and secondary (TCS) collimators

360 MJ proton beam

	Parameter		Unit	Specification	
	Jaw materia	l		CFC	
	Jaw length	TCS TCP	cm	100	
	Jaw tapering		cm	10 + 10	
	Jaw cross se	ection	mm ²	65 × 25	
	Jaw resistivi	Jaw resistivity Surface roughness		≤ 10	
	Surface roug			≤ 1.6	
	Jaw flatness errorHeat loadJaw temperatureBake-out temp.Minimal gapMaximal gapJaw position control		μm	≤ 40	
			kW	≤ 7	
			°C	≤ 50	
			°C	250	
			mm	≤ 0.5	
			mm	≥ 58	
			μm	≤ 10	
Jaw angle control		µrad	≤ 15		
	Reproduci	bility	μm	≤ 20	
Η	B2010			2003 Specification	

Ralph Assmann

Precisions Control & Movements

Accurate stepping motors control jaw positions versus time!

Ralph Assmann

Ralph Assmann

Ralph Assmann

Multi-Stage Cleaning & Protection 3-4 Stages

Ralph Assmann

Ralph Assmann

HB2010

25

Phase I in Tunnel (Radiation-Optimized)

Outline

- The Energy and Intensity Frontier at LHC
- The LHC Collimation System
- Collimation Setup
- Performance: Simulation and Measurement
- Outlook: Upgrades
- Conclusion

Collimation Setup

- Collimation setup: Jaws are moved symmetrically around the beam until jaws create ~equal beam loss. Halo-based adjustment.
- Info from beam-based calibration: Beam center, beam size variation from collimator to collimator.
- Injection: beam center and calibrated beam size used to move collimators to +- N sigma around the beam.
- <u>Top energy</u>: beam center and nominal beam size (beta beat < 20%) used to move collimators to +-N sigma around the beam.
- Target settings determined from simulations (see table).

LHC Collimation

Project

Collimation Setting Overview

(in terms of β beam size, valid 12.6. – 30.8.2010)

	Unit	Plane	Set 1	Set 2	Set 3	Set 4
Condition			Injection	Injection	Collision	Collision optics,
			optics	optics	optics,	colliding,
					separated	crossing angle
Energy	[GeV]		450	3500	3500	3500
Primary cut IR7	[σ]	H. V, S	5.7	5.7	5.7	5.7
Secondary cut IR7	[σ]	H, V, S	6.7	8.5	8.5	8.5
Quartiary cut IR7	[σ]	H, V	10.0	17.7	17.7	17.7
Primary cut IR3	[σ]	Н	8.0	12	12	12
Secondary cut IR3	[σ]	Н	9.3	15.6	15.6	15.6
Quartiary cut IR3	[σ]	H, V	10.0	17.6	17.6	17.6
Tertiary cut experiments	[σ]	H, V	15-25	40-70	15	15
TCSG/TCDQ IR6	[σ]	Н	7-8	9.3-10.6	9.3-10.6	9.3-10.6

Ramp functions move smoothly from set 1 to set 2 during energy ramp!

3.5 TeV setup took ~30 h of beam time with single bunch of 1e11 p. Time distributed over 10 days with ~1 collimation shift per day.

Settings Calculation

- The collimator settings are calculated (based on beam-based data) to:
 - Provide good efficiency.
 - Provide the correct collimator hierarchy (slow primary losses at primary collimators).
 - Protect the accelerator against the specified design errors.
 - Provide continuous cleaning and protection during all stages of beam operation: injection, prepare ramp, ramp, squeeze, collision, physics.
 - Provide maximum tolerances to beam and various collimator families.
 - Provide warning thresholds on all collimator axis positions versus time.
 - Provide interlock thresholds on all collimator axis positions versus time.
 - Provide interlock thresholds on all collimator gaps versus beam energy.
- Complex problem with some 100,000 numbers to control the system.
- Redundant calculation: time-dependent (ABP), energy-dependent (OP)

Outline

- The Energy and Intensity Frontier at LHC
- The LHC Collimation System
- Collimation Setup
- Performance: Simulation and Measurement
- Outlook: Upgrades
- Conclusion

Performance: Simulation and Measurement

- First step for redesign of LHC collimation system: Setup of parallel simulation program and CPU cluster to numerically optimize the system.
- Maximum runs: 20,000,000 protons tracked over 200 turns
 108 billion proton-km
- Imagine: Simulating a proton that travels 700 times the distance sun-earth in an accelerator!
- Simulation included all magnetic elements and an aperture model with a resolution of 0.1 m!
- Simulation includes halo proton generation, halo transport, proton-matter interaction and aperture checks for each proton every 0.1m!
- Decisions taken based on simulations: material, length of jaws, reduced number of primary collimators by 20%, reduced number of secondary collimators by 25%, added tertiary collimators, ...
- AP simulations complemented by FLUKA energy deposition!

- Review LHC collimator-induced impedance (not thought to be problem).
- Surprise in 2003: LHC impedance driven by collimators, even metallic collimators.
- LHC has an impedance that depends on the collimator settings!
- Predicted in detailed simulations (E. Metral et al) and found as predicted. Stabilized with transverse damper and octupoles!

450 GeV: Cleaning Measurement

Beam 1 – Horizontal (Q_x crossing of 1/3 resonance)

Measured 6 days after beam-based setup of collimators - no retuning...

HB2010

LHC Collimation

Project

CERN

Measured 6 days after beam-based setup of collimators - no retuning...

450 GeV: Cleaning Measurement

Beam 2 – Horizontal (Q_x crossing of 1/3 resonance)

Measured 6 days after beam-based setup of collimators - no retuning...

450 GeV: Simulation vs Measurement

(Data 2009 - PhD G. Robert-Demolaize 2006, p. 114)

Simulation with worst case design orbit error, proton tracking, no showers

LHC Collimation

Project

CERN

450 GeV: Simulation vs Measurement

(Data 2009 - PhD G. Robert-Demolaize 2006, p. 114)

Simulation with worst case design orbit error, proton tracking, no showers

Measured Cleaning at 3.5 TeV (beam1, vertical beam loss, intermediate settings)

2m optics exposes IR's as expected! Protected by tertiary collimators.

LHC Collimation

Project

CERN

Beam Loss [Gy/s]

LHC Collimation **Betatron Cleaning: Stability** Project **Over 10 Weeks** CERN $x 10^{-4}$ Sum over all horizontal TCTs 8 3.5 TeV D. Wollmann et al B1-h inefficiency 7 B1-v 6 B2-h 5 B2-v cleaning 4 3 2 local 1 0 18.06.2010 28.07.2010 11.08.2010 27.08.2010

Outline

- The Energy and Intensity Frontier at LHC
- The LHC Collimation System
- Collimation Setup

Performance: Simulation and Measurement

- Outlook: Upgrades
- Conclusion

Outlook: LHC Collimation Upgrades

Ralph Assmann

Phase 2 Coll. With SPS Beam Drifts

Standard BLM-based Method – Observing Jaw-BPM's

HB2010

LHC Collimation

Project

CERN

Conclusion

- The LHC collimation system has been designed, produced, installed and commissioned over the last 8 years!
- Major effort to make it right, with strong support from various CERN departments and outside collaborators. Biggest and most complex (also most expensive) system built so far.
- LHC <u>collimation works with expected performance level and has shown</u> <u>an amazing stability</u> over the last 2 months. <u>Simulations were right!</u>
- Collimation and beam cleaning allowed the LHC in establishing the intensity frontier in 6 months (passing Tevatron, HERA, ISR, RHIC, ...).
- Not a single quench with stored beam!
- Thanks to all the world experts helping with advice and support over the years. Our success reflects the rapid progress in the field.
- Upgrades are being prepared to improve collimation by a further factor 5-10 over next years.

Pointers to Talks & Posters

Other talks/posters on LHC collimation-related topics:

<u>S. Redaelli</u> – Operational Performance of Collimation

<u>D. Wollmann</u> – Collimation Upgrade

<u>M. Zerlauth</u> – Machine Protection

<u>E.B. Holzer</u> – Beam Loss Monitors

<u>A. Nordt</u> – Beam Loss Monitors

V. Kain – LHC Beam Commissioning

LHC Collimation