Working Group F Summary: Beam Diagnostics and Instrumentation for High-Intensity Beams

Manfred Wendt for the Working Group F contributors

WG F: Overview

- 10 Presentations in 2 sessions, 3¹/₂ hours total
 - Y. Hashimoto:
 Multi-Ribbon Profile Monitor Using a Carbon Graphite Foil for the J-PARC
 - M. Hori: A Time-Resolved SEM monitor with large Dynamic Range
 - W. Blokland: Non-Invasive Beam Profile Measurements using an E-Beam Scanner
 - P.-A. Duperrex: Current and Transmission Challenges for High-Intensity Beams
 - E. B. Holzer: Commissioning and Optimization of the LHC BLM System
 - C. Gabor: Status Report of the RAL Photo-Detachment Beam Profile Monitor
 - P. Forck: Beam Induced Fluorescense Profile Monitor Development
 - J. M. Carmona: First Measurements of Non-Intercepting Beam Profile Monitor Prototypes for Medium to High Current Hadron Accelerators
 - K. Satou: IPM Systems for J-PARC RCS and MR
 - M. Wendt:
 - Beam Instrumentation for High-Intensity, Multi-GeV Superconducting Linacs
 - Thanks to the speakers(!), and to all participants!
- Discussions session joint with WG-E (Computational Challenges), ~ 1 hour
 - A. V. Aleksandrov: Challenges of Reconciling Theoretical and Measured Beam Parameters a the SNS Accelerator Facility

- Classification
 - 7x transverse beam profile
 - 2x invasive (SEM)
 - 5x non-invasive (photo-detachment, e-beam deflection, rest gas)
 - 1x beam intensity and beam current transmission
 - 1x beam losses and machine protection
 - 1x general overview
 - 1x theoretical vs. measured beam parameters
- Some Highlights
 - Invasive profile monitor R&D with minimum residual losses
 - Calibration and fitting advances for non-invasive monitor data
 - Environmental and practical issues on cavity current monitors
 - LHC BLMs detect unexpected loss patterns (dust particles?)
 - Simulations and beam monitoring are orthogonal (no trade).

Y. Hashimoto: Multi-Ribbon Carbon SEM

Graphite Ribbon

- **1.6 2** µm thick
- Up to 200 mm long,
 <1 % un-uniformity
- 0.8 keV beam loss at 3 MeV beam energy
- **Tested:** 1x10¹³ ppb
- Design: 4x10¹³ ppb up to 8 bunches
- Beam halo detection by core signal suppression (factor 2000)

M. Hori: Time resolved SEM

Electronic gating and acquisition system Phosphor screen CCD Grid E Grid D Target foil 10 µ Grid F Grid C 5 kV. 100-ns FET switch F * -500 V avalanche 1 kV, 100-ns diode switch FET switch G 3.5 kV Timing avalanche Gate and delay signal diode switch generator H NIM A 588, 359 (2008)

• 3D SEM

- 2 mm spatial resolution
- <1 nsec time resolution</p>
- 10⁸ dynamic range
- n_p=10 protons / pulse sensitivity

W. Blokland: Electron Beam Scanner

Amplitude

P.-A. Duperrex: Beam Intensity & Transmission

E.B. Holzer: LHC BLM Interlock

- Complex protection interlock
 - 3600 ICs & 300 SEMs
 - Interlock with multiple integration intervals / "families" of monitors
 - Continues / regular self tests
- Performance
 - No evidence of a single beam loss event been missed
 - No avoidable quenched passed BLM protection
 - All exceptionally high losses caught hardware failures never caused a degradation of reliability
 - No dumps on noise
 - Few hardware failures, mostly detected by offline checks
- Experience
 - More redundancy in loss measurement than expected
 - To be improved: Better long cables or rad-hard read-out electronics for S/N improvements.
 - Unexpected beam aborts!
 Hypothesis: Dust in the machine?!

Beam Induced Fluorescense Monitor

- P. Forck (GSI)
- 4x2 @UNILAC operational
 - Intensified CCD camera

Option:
 Fiber-optic bundle ⇒ shielding

- J.M. Carmona (CIEMAT/CAN)
- Prototypes:
 - Intensified radhard CID camera
 - Multianode PMT

Fluorescense Monitor Signals

ICCD

- 4x10¹⁰ Xe⁴⁸⁺ at 200MeV/u, p=10⁻³ mbar
- Signal ~ energy loss (Bethe-Bloch) Spectral analysis

Background from radiation (&reflections)

Background ~ E_{kin}^2 \Rightarrow shielding required

 Doses of ~27.2 mSv/h for gammas and ~6.5 mSv/h for neutrons

2400

2200

2000

1800

1600

1400

1000

800 600

400

Profiler

PM

-Data

fitted curve

Top

data

Bottom

fitted curv

Vire

0.04

Top

0.045 0.05

Time (s)

350 Pixels 0.055 0.06

Bottom

0.035

0.03

0.025

0.02

0.01

0.0

6000

5000

4000

3000

deuteron

Beam Energy=9 MeV Beam Intensity=15 uA Pressure=7x10⁻⁴ mbar of N₂ ICID voltage=1580V, *τ*=20ms PMT voltage=900V, *τ*=5ms

FWHM (95% C.I.)

fitted curv

data

C. Gabor: Laser Wire for Low Energy H-

K. Satou: J-PARC IPMs

M. Wendt: SRF Linac Beam Diagnostics

- Essential beam instrumentation:
 - Beam trajectory
 - Beam position monitors (BPMs)
 - Beam phase, time-of-flight (TOF)
 - BPMs, WCMs, EO methods
 - Beam intensity
 - Toroid, wall current monitor (WCM)
 - Beam losses
 - BLM (ion chamber), TLM (Heliax)
 - Beam profile / emittance & halo
 - SEM (mulitwire), wire scanner, *Allison* scanner, slits, vibrating wire, laser diagnostics, e-beam scanner, IPM, etc.
 - Bunch profile & tails
 - Feschenko bunch shape monitor, laser diagnostics, etc.

- SRF issues:
 - High beam power -> low losses
 - Rule of thumb: <1 W/m
 - Residual losses of invasive diagnostics
 - Requires non-invasive diagnostics
 - Cavities: cleanroom class 10
 - Contamination from dissociated wire material, etc.
 - Cryogenic temperatures
 - Avoid moving parts in the CM
 - Cryo-string sectioning
 - Warm diagnostics sections
 - In the cryo-modules (CM): just BPMs, no other beam diag.!
 ...perhaps BLMs!

A. Aleksandrov:

Theoretical vs. measured Beam Parameters

Accuracy of beam modeling in different parts of the SNS linac (informal)

	Transv.	Transv.	Long.	Long.	Halo
	centroid	RMS	centroid	RMS	
RFQ	NA	NA	NA	NA	No clue
MEBT	good	good	not so good	good	No clue
DTL	good	not so good	very good	NA	No clue
CCL	very good	not so good	very good	not so good	No clue
SCL	not so good	not so good	very good	NA	No clue