НВ 2010 SEFT. 27 - ОСТ. 1, 2010 MORSCHACH / SWITZERLAND

WG-D: Commissioning, Operations and Performance

Conveners: A. Mezger, H. Hotchi, J. Galambos

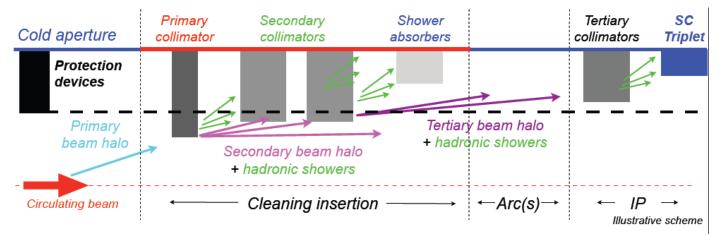
(See program for list of talks)

Initial charge for this group:

- What are the challenges in the light of very high intensity proton beams (dynamic range, losses ...) ?
- tuning procedures and interlock systems for high intensity machines ?
- reliability, practical experience from operating facilities highly appreciated ?

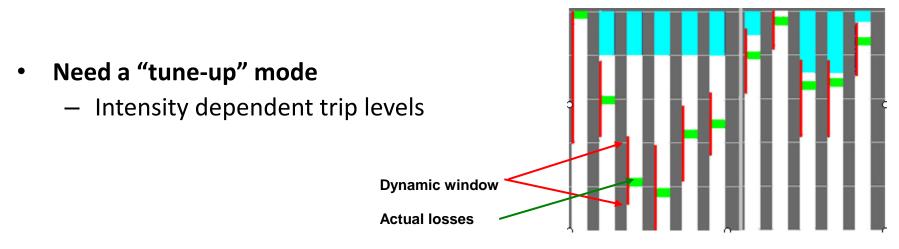
LHC

• Initial commissioning progressing quite well -


20 th Nov	Day 0	Both beams circulating after 6 hours
23 rd Nov	Day 3	First pilot collisions at 450 GeV
29 th Nov	Day 9	Beams ramped to 1.18 TeV
6 th Dec	Day 16	Stable collisions @ 450 GeV for the experiments
8 th Dec	Day 18	Both beams ramped to 1.18 TeV – first collisions

- The intensity is being ramped up carefully, under controlled conditions
 - Low intensity MPS setup, then beam with no crossing, crossing
 - 150 bunches to date (aiming for 400 this year)
 - 10 MJ stored energy achieved (~30 MJ aimed for by end of year, 360 MJ final)
 - No magnet quench yet with stored beam
 - Average store is ~ 8 hrs
 - Are occasional fast local scattering source loss events that are not understood

Goals


2009			2010	2011		
Repair of Sector 34	1.18 TeV	nQPS 6kA	3.5 TeV I _{safe} < I < 0.2 I _{nom} β* ~ 3.5 m	lons	3.5 TeV ~ 0.2 I _{nom} Ions β* ~ 3.5 m	
No Beam B			Beam		Beam	

LHC Multistage Collimation

- Careful collimator setup, using empirically determined settings for a given beam setup
 - Complex pre-programmed algorithm to follow beam through ramp stages
 - Many interlocks to assure this complicated system is working properly
 - 1 week to setup process, not expected to hinder progress rate
- Repeatability is critical
 - appears to work within spec (10 μ m)
 - Present setup used for ~3 months
- Efficiency / performance is close to predictions

Machine Protection Systems

• All facilities employ redundant beam shut-off systems

• Varying levels of bypass control

- LHC has high level of control- cannot run with inputs by-passed, signatures,
- Others are less formal, but all facilities have some control
- Sophistication and configuration control of the protection system seems to be proportional to the investment being protected

Machine Protection

- Protect against direct damage from beam, activation buildup and satisfying environmental regulations
- Many inputs to MPS
 - LHC has 10⁴, order of magnitude more than other high power devices

Response times

- 1-10 ms : CW machines (PSI)
- 10s of μs: pulsed machines (SNS, LANSCE, J-Parc)
- Some facilities employ slow and fast protection systems (SNS, LANSCE)
 - Fast hardware based system protects machine from direct damage (RF, BLMs,)
 - Slow system integrates loss to prevent excessive activation (integrated loss over 1-10 seconds)
 - Limits set closer to operational loss levels than the fast limit
- Fast protection integrated systems are in-house developments not commercially available
 - Less formal controls than nuclear industry

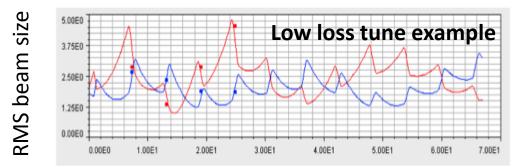
Residual Activation

- Machines are hand's-on maintainable with > 1-10 uSv/hr at 30 cm "Hot spots"
 - Newer facilities have not had time to mature to this level
 - J-Parc activation is quite low
 - Some facilities have areas of controlled beam loss (higher activation) which require special care
- Annual workforce doses : 10's of mSv
 - SNS: 20, LANSCE: 50, J-Parc: 5, FNAL: 30
- Models are successfully used to predict expected residual activation
 - Simple models (FNAL)
 - Complex simulations (e.g. WG-G)
 - Important to model activation levels during design stage for high-intensity machines
- Mature facilities can accurately predict post-operational residual activation levels from experience
 - With modest power ramp-up factors (10's of %), one can also predict activation levels with reasonable confidence

Availability

= (time beam is provided) / (time beam promised to be on)

• High power facilities annual average last year


- SNS 86% (increasing)
- PSI 90%
- LANSCE / Lujan- 85%
- ISIS 88% (1998-2008 average)
- FNAL 95% (MR only)
- J-Parc annual average NA, but 92% for 5 recent runs
- Difficult to exceed 90%
- High Intensity Machine
 - LHC is just starting, ~40% time spent with stored beam

Availability

- Lower availability at the start of runs is typical
 - Try and schedule long runs if possible
- Beam setup time after extended maintenance
 - SNS: 1 week
 - LANSCE: 3-4 weeks
 - PSI: 2 weeks
 - FNAL: 2-3 days
 - ISIS: 1 week/(month of downtime)
- long outages are generally the largest cause on non-availability

Loss Tuning

- Setups are physics based initially, but subsequent empirical loss based tuning is common
 - Control room physicists cannot yet reproduce model predictions

Annual User Operation Hours Planned

- PSI: 5600 hrs (64% of year)
- SNS: 4900 hrs (56% of year)
- LANSCE/Lujan: 3300 hrs (funding limited)
- Where is the rest of the time spent (SNS, PSI)
 - Maintenance / upgrades (25 30%)
 - Beam studies, Training (10%)
 - Startup (3%)

Summary

- Exciting to hear about initial LHC runs
- Great deal of commonality in operation of high intensity, high power proton machines