Summary of Working Group C: Injection, Extraction, Accelerator Systems

D. Johnson and S. Cousineau

ICFA HB2010 Sept 27 - Oct. 1 Morschach, Switzerland

Outline of Summary

1. Essence of the Work Group

- New ring/lattice concepts
- Commissioning efforts
- Designs for new facilities or upgrade plans (and challenges)
- Operational facilities
 - Problems encountered
- 2. Foil technology status
- 3. Future technology for H- injection
- 4. Working group perspectives

Essence of the Work Group

- Composition: 2 oral sessions (9 talks) + Poster session (9 posters)
 - 1st session concentrating on injection
 - 2nd session on new accelerator designs and extraction
 - Work group discussion after 1st session focused on injection issues.
- New ring/lattice concepts
 - Non-Scaling FixedFieldAlternatingGradient rings/lattices
- Commissioning efforts
 - EMMA
- Designs for new facilities or upgrade plans
 - CERN (PSB and PS2)
 - PAMELA
 - PEFP
 - Project X
 - Mu2e (resonant extraction from FNAL Debuncher)
- Operational facilities
 - SNS
 - JPARC

New Accelerator/lattice Concepts

- NS-FFAG
 - Benefit with large momentum aperture
 - With one or a few passes
 - Gantries
 - RIA's for muons and electrons
 - p+- or proton rings for longitudinal manipulations
 - For non-relativistic particles ->a few hundred turns
 - Particle therapy machines
 - Proton Drivers
 - Heavy ion drivers
- New "solid state direct drive" linear induction accelerator

Commissioning efforts

- Electron Model for Many Applications (EMMA)
 - Although not High Energy or High Intensity- first demonstration of a Non-Scaling FFAG(10-20 MeV)
 - Goals: EMMA Experiment (verify this new concept works)
 - Rapid acceleration with large tune variation
 - Serpentine acceleration
 - Map the transverse and longitudinal acceptances
 - Completed injection commissioning (1000's turns)
 - Limited diagnostics (BPM's)
 - Injection kicker ringing
 - Demonstration of acceleration (current focus)
 - Detailed bench marking with codes

Challenges for machines under design

• <u>Project X:</u>

- Foil issues associated with long duration (~25 ms) injection of CW beam for proton driver or multiple short pulse injections. Constrains beam current to ~1mA which increases circulating beam hits on foil.
- <u>CERN:</u>
 - Both Linac2 upgrade from 50 MeV protons to 160 MeV H- requires PSB injection upgrade to H- multiturn injection. will try to use existing injection hardware.
 - PSB extraction upgrade from 1.4 GeV to 2 GeV and the modification of PS for 2 GeV injection (including upgrade of injection line hardware)
 - Challenge is to make the new system work with the old hardware.
- PAMELA:
 - 30 to 70-250 MeV NS-FFAG (orbit moves with energy)
 - Design a fast and slow vertical extraction system which matches into extraction channel without
- <u>Mu2e:</u>
 - Design a resonant extraction system with good spill quality and low losses in the presence of large space charge and momentum spread.
- <u>PEFP:</u>
 - Currently operating 20 MeV linac, cavities to extend to 100 MeV finished this year. Plans for upgrade to 1 GeV RCS

Operational facilities

- Injection Experience in Recent High Power Machines
 - Despite detailed design work, both machines have suffered problems in injection areas.
 - Injection radiation levels are the hottest areas in both machines. This was anticipated.
 - Not anticipated was the amount of manpower + monetary resources that would be dedicated to addressing injection region issues after start of operations.

JPARC + SNS Injection/Extraction Recent Issues

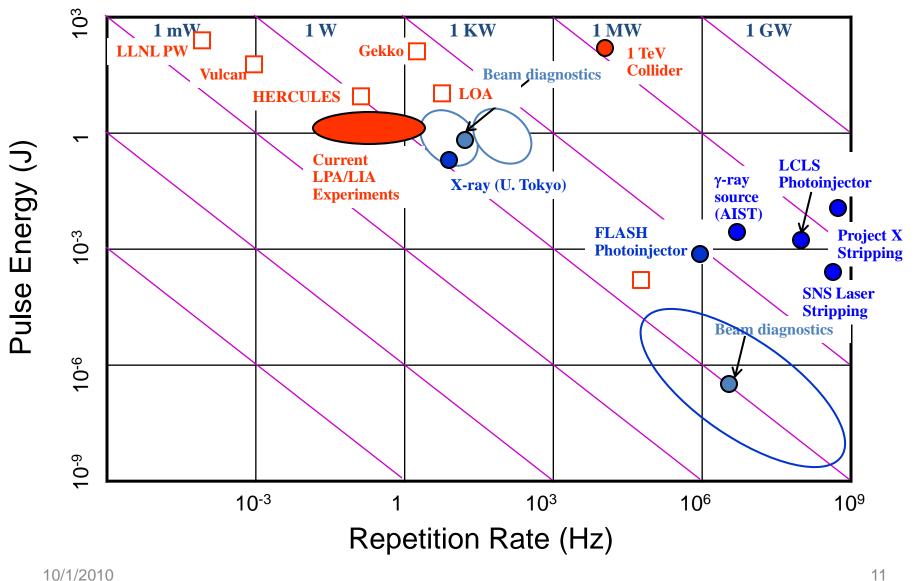
JPARC:

- •High loss due to circulating beam foil hits. Full aperture model not available during design stages, so loss locations not accurately predicted.
- •IDmp aperture restriction causing beam loss.
- •Extraction septum stray field issue
- SNS
- •IDmp aperture restriction also a problem for SNS.

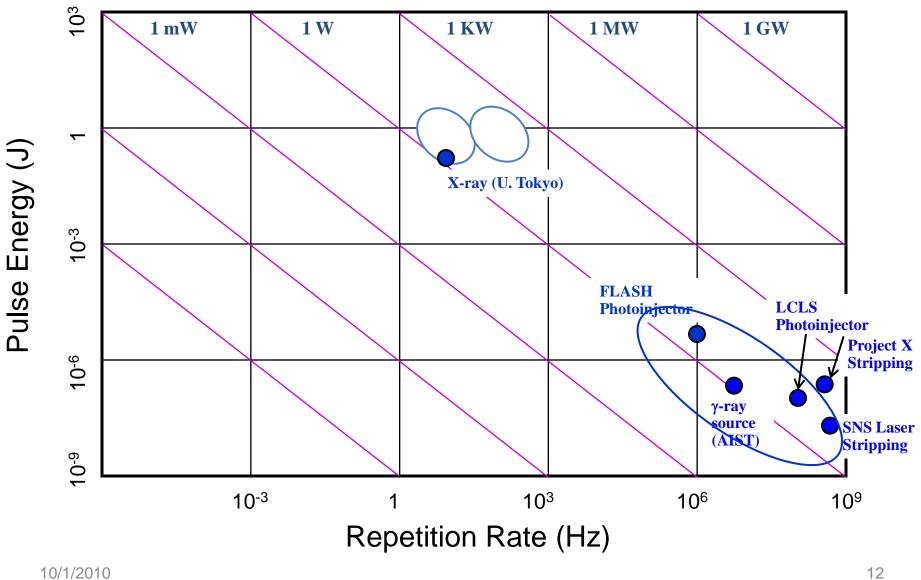
•Foil damage and failure due to vacuum breakdown. •Foil assembly damage due to reflected convoy (Hstripped) electrons. 8

Foil Technology Status

 Some foils currently in use are those which were under discussion as "promising new foil candidates" at HB2002, HB2004.


Machine	Beam Power	Foil	Lifetime / Use
JPARC	120 kW	НВС	1 Yr
SNS	1 MW	Diamond foil	18 weeks
LANL	80 kW	НВС	2 per year
ISIS	200 kW	Aluminum Oxide	1 per year

Future Technology for H- Injection


- Unique foil injection concepts

 "Rotating foils"
- Laser technology
 - Lasers have come a long way in the last decade, but still fall short of laser-assisted stripping injection needs for high power beams.
 - Injection stripping requires: high peak power (MW), large pulse energy (mJ-mJ), high average power (kW), high pulse frequency (100's Mhz)
 - Burst mode laser system
 - Recycling helps but has it's own challenges.
 - Coherent beam combining
 - Cryogenic laser amplifiers

Gap between application requirements and available specs

Average power dropped more than 1000 times!

Working Group Perspective

- <u>Question</u>: What do we need to get to 5 MW and beyond?
- <u>Response</u>:

1) "A model versus measurement benchmark of foil temperature."

We need to validate the foil models before we can rely on them to give us limits.

This is a complicated diagnostics measurement because of the high radiation in the environment of the injection foil.

Working Group Conclusions

Working Group Comment:

Dump lines are not getting enough attention during the design stages.

For high power beams, the waste beams contain a significant amount of beam power and beam loss can be an issue.

Dump lines need more aperture, more knobs, e.g, more flexibility overall.

In the End

- There were many enlightening presentations
- There were many fruitful discussions
- There was much food and coffee
- A wonderful banquet
- Superb presentation and support personnel
- Friendly smiles everywhere
- And a big round of applause for PSI.