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Abstract

Currently when the effects of space charge on a beam
line are calculated the problem is solved using a particle in
cell method to advance a large number of macroparticles. If
quantities such as space charge induced tune shifts are de-
sired it is difficult to determine which of the many variables
that make up the beam is the cause. The new method pre-
sented here adds the effects of space charge to a nonlinear
transfer map, this allows us to use normal form methods to
directly measure quantities like the tune. This was done us-
ing the code COSY Infinity which makes use of differential
algebras, which allow the direct calculation of how the tune
depends on the beam current. The method involves finding
the high order statistical moments of the particles, deter-
mining the distribution function, and finally the potential.
In order to advance the particles as accurately as possible
a fast multipole method algorithm is used. In this talk we
present the new methods and how they allow us to follow
the time evolution of an intense beam and extract its non-
linear dynamics. We will also discuss how these methods
can improve the design and operation of current and future
high intensity facilities.

INTRODUCTION

The purpose of this study is to create a method whereby
the effects of space charge in a particle beam are included
in the transfer map of the machine the beam is passing
through. Currently the transfer map governs the motion of
single particles in the machine, which is useful for steering,
bare tunes, dynamic apertures, and many other quantities of
interest governing the motion of single particles. Creating
this new space charge added map will allow for the analysis
of the effects of space charge on quantities that are directly
extracted from the map using normal form methods such as
tunes and chromaticities.

The calculation of the space charge effect involves first
creating a distribution of particles which will serve as prox-
ies for the beam. These are used to calculate the dis-
tribution function throughout the beam pipe, the distribu-
tion function is then integrated with an appropriate Green’s
function to determine the potential. The potential is used
to find the electric fields, which are used to create an elec-
tric field map which is applied to the map of the element
using Strang splitting. We will begin with an overview of
the process before examining some results.

SOFTWARE ENVIRONMENT

The software being used is COSY Infinity 9.0 [1]; this
package uses differential algebras to perform exact numer-
ical differentiation as well as to create Taylor models of the
elements in question. Differential algebras work by creat-
ing vectors with their elementary mathematical operations
redefined in such a way that they retain the derivatives of
each quantity as they move through an algorithm. This al-
lows for not only non-linear Taylor maps, but for coordi-
nate transforms to normal form coordinates that retain any
variable dependances that the original map had. These Tay-
lor models allow for high order transfer maps, as well as
non-linear normal form transformations. The easy inclu-
sion of non-linearity in the transfer maps, which allows out-
side calculation using differential algebras makes the task
of adding space charge to the transfer map significantly less
cumbersome than a traditional code.

DISTRIBUTION CALCULATION

In order to create a map of the effects of space charge
in a region, the distribution must be calculated within that
region. We use a set of discrete test particles as proxies for
the distribution which can be used to calculate the Taylor
series.

The particles are formed into a Taylor series using their
statistical moments. If two distributions have the same mo-
ments, mathematically they are identical [2]. The moments
are calculated by,

Mnm =

Nparticles∑

i=1

xn
i y

m
i . (1)

If we assume that the distribution is a Taylor series of the
form, ρ(x, y) =

∑
i

∑
j

Cijx
iyj , then the moments can be

connected to the coefficients with the equation,

Mnm =
∑

i

∑

j

∫ xr

−xr

∫ yr

−yr

Cijx
n+iym+jdxdy, (2)

where xr and yr are the x and y boundarys. This is triv-
ially integrated, forming a matrix equation. This matrix is
inverted using truncated single value decomposition, which
gives the proper values for the Taylor series coefficients.
This is the same way that the coefficients are found for
three dimensions.
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POTENTIAL INTEGRATION

Now that the distribution function has been determined,
the potential must be found. This is accomplished by
integrating the distribution function multiplied with the
appropriate Green’s function over the region of interest.
The Green’s function takes the form of either 1

|r−r′| or
ln(|r − r′|) for 3D and 2D distributions respectively. The
methods involved for both 2D and 3D are similar, but 2D
will be shown in this paper. The integral I which computes
the potential at point (x0, y0) due to the distribution func-
tion ρ(x, y) in the domain D ∈ [a, b]× [c, d] is,

I =

d∫

c

b∫

a

ρ(x, y) ln(
√
(x− x0)2 + (y − y0)2)dxdy. (3)

If our point of interest (x0, y0) is outside of D then stan-
dard numerical integration can be performed. However, if
the point is within the distribution there will be a singu-
larity at that point where standard numerical integration
breaks down. This singularity can be removed using a
Duffy transformation[3], which is explained below.

The Duffy transformation is performed by cutting D into
four rectangles, which all share a vertex at (x0, y0), as seen
in Fig. 1. This has the effect of splitting the one integral
I into four integrals Iac, Iad, Ibc, and Ibd. These are all
integrals of the same form, so we will focus on Iac. The
next part of the transform is to scale the sides so that it is
an integral over a unit square,

Figure 1: The integration region is subdivided into four
smaller regions with their corners on the expansion point.
This moves the singularity from the center to a corner.

u1 =
x− x0

a− x0
; u2 =

y − y0
c− y0

, (4)

dxdy = (a− x0)(c− y0)du2du1. (5)

To speed things up we will use λ1 = (a− x0) and λ2 =
(c − y0). As is shown in Fig. 2, the square is then cut into
triangles which will be separately integrated.

Iac =

∫ 1

0

∫ u1

0

λ1λ2ρ(λ1u1 + x0, λ2u2 + y0)×

Figure 2: This shows how the integration region is further
subdivided into triangles.
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2
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The final step is to convert the triangles to unit squares with
the transformations,

u1 = w1; u2 = w1w2, (7)

and,
u1 = w1w2; u2 = w2, (8)

which gives the integral in the following form,

Iac =

∫ 1

0

∫ 1

0
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2
2))dw1dw2

+
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λ1λ2ρ(λ1w1w2 + x0, λ2w2 + y0)×
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√
λ2
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1w
2
1))dw1dw2. (10)

Notice that there is now no singularity in the integrand. The
3D version involves cubes and pyramids instead of squares
and triangles, but the transformation and the result are sim-
ilarly effective.

ELECTRIC FIELD KICK

Once the potentials have been calculated, COSY’s abil-
ity to find exact numerical derivatives comes into play, and
is used to find the electric fields for the region in question,
which are then added into the map using a technique known
as Strang splitting [4]. This is a method of finding a solu-
tion to a differential equation that can be thought of as a
combination of two differential equations with known so-
lutions,

d�z

ds
= �g1(�z, s) =⇒ �f1(s), (11)

d�z

ds
= �g2(�z, s) =⇒ �f2(s), (12)
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Which can be solved in the autonomous case as,

d�z

ds
= �g1(�z)+ �g2(�z)=⇒ �f1(

s

2
)◦ �f2(s)◦ �f1(s

2
)+O(s3). (13)

The space charge kicks are calculated over a region small
enough to allow us to assume an autonomous system. Since
COSY already contains the maps for the single particle el-
ements, the kick is combined with the pre-existing maps.

PARTICLE ADVANCEMENT

In cases where the distribution is symmetric and easily
modeled using a Taylor series of the desired order then the
kickmap that is generated can be used to advance the test
particles. In some cases the distribution can be more com-
plex than the Taylor series is capable of advancing. Since
quantities such as the space charge induced tune shift affect
the reference particle the information is still useful, but a
more stable method for advancing the particles is still re-
quired. This has been accomplished using a single level
instance of the fast multipole method [5].

The method works by subdividing the region of inter-
est into smaller squares. It then calculates the multipole
moments of each square up to a desired order. Then a Tay-
lor series for each square is calculated from the multipole
expansions of the squares that do not share an edge with
the one in question. Finally for each point the potential is
calculated using the Taylor series and the individual inter-
actions of each of the particles in the neighboring squares.

METHOD EFFECTIVENESS

Now that the method of adding space charge to the map
has been derived we need to determine what the optimum
conditions are for its use. Since a series of test particles are
being used it becomes important to determine how many
particles are needed to achieve convergence. If we look at
the moments of the distribution when compared to the ideal
moments in Fig. 3 we see that there is good convergence at
the 106 particle mark.

Since the Taylor models are given at a particular order
as are the moments being used it becomes necessary to de-
termine which orders in the Taylor series or the moment
order are ideal. The differences in the potentials over a
wide range of the space are averaged to determine how ac-
curate the potential as calculated using the moment method
is with respect to a point by point coulomb solver. As can
be seen in Fig. 4, the most accurate area is in the region
at 17th order in the moment method with the Taylor series
order at or above 17 For a uniform distribution.

METHOD IN PRACTICE

A number of tests must be done to see how well this
new method works in comparison with systems that can
be solved analytically or numerically with high accuracy.
First, we compare the expansion of the beam due to space
charge as it moves through a drift. Assuming a uniform
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Figure 3: This are the moments calculated for a uniform
square using an increasing number of test particles, The
blue points indicate the moment as calculated, while the
purple line indicates the ideal moment.

beam with a diameter of 1 cm with 1 A of current over a
drift of 20 cm with an energy of 100 KeV, the relation,

rm
r0

= 1 + 5.87× 10−5 I

(γ2 − 1)
3
2

(
z

r0
)2, (14)

predicts a quadratic increase in radius of 33% [6]. We cal-
culate the increase from the map method in two separate
ways; first by placing test particles at the edges of the be-
ginning distribution, the other is by examining the linear
map element that compares the initial to the final size of
the beam. Projections of the initial and final distribution
are shown in Fig. 5 while a comparison of the methods and
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Figure 4: This shows the potential of a uniform circular dis-
tribution for different integration and moment orders. This
was done by creating a grid of the orders. The darker the
area the higher the accuracy. The contours show the region
between 0 and .002.

sizes are shown in Table 1. A profile of the increase is
shown in Fig. 6 which shows the quadratic character of the
size growth.
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Figure 5: (color) A comparison of the initial and final hori-
zontal and vertical test particle positions in the 20cm drift.
Purple indicates the initial points, blue the final.

The next set of experiments involves the addition of
quadrupoles to the system, we use a drift quad drift quad
drift FODO cell system to study how the tune of the sys-
tem changes with increasing space charge. Both the num-
ber of particles and the initial distribution are the same,
the only change is in the peak current. In Fig. 7 there is

0.20

0.20E-01

0.20E-01

X-motion

Figure 6: (color) A profile view of the increase in beam
size through a drift.

Table 1: Table of different methods for finding the increase
in size from beginning to end in the described problem.

Method Growth
Edge Point x 35.27 %
Edge Point y 35.30 %

Map Element x 31.21 %
Map Element y 31.34 %

a distinct change in the tune as the current changes, but the
quadrupole currents remain constant.

The values that are used in Fig. 7 are directly calculated
from the map of the system, which gives direct numbers
for the x and y tunes, these values can now be used with
a fitting algorithm to solve for a desired set of fractional
tunes with space charge included. The results shown in
Fig. 8 show that the fitting algorithm was able to frequently
determine the quadrupole currents necessary to bring the
tune of the system back to the bare tune and counteract the
effects of space charge. This new ability to fit a system to
desired parameters with space charge as an included quan-
tity provides a deeper understanding of how elements can
be adjusted to get desired effects both during the design of
new machines and during the evaluation of extant ones.

Finally, another use combines the ability to calculate
space charge maps with COSY’s ability to create exact nu-
merical derivatives. This involves how the chromaticity of
the system is determined by the effects of space charge on
the beam. Using the tunes at a different operating point we
can see in Fig. 9 that both the tunes and the chromatici-
ties become nonlinear with increasing peak current. This is
an excellent example of a system moving from being emit-
tance dominated to being space charge dominated.

CONCLUSIONS

We developed a method for including the effects of space
charge in the transfer map of a system. This method now
allows us to calculate how space charge can effect quan-
tities such as tunes and chromaticities using normal form
methods. This was accomplished by converting a set of
test particles into a distribution function, which could be
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Figure 7: (color) The X and Y fractional tunes as calculated
through a system with increasing peak beam current.
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Figure 8: (color) The X and Y normalized quadrupole cur-
rents are shown in the upper diagram with their resultant
tunes in the lower diagram.

integrated with a Green’s function after a series of coordi-
nate transforms. The resultant potential could then be used
to find the electric field and thus apply that to the motion of
the particles. This method is a self consistant computation
of space charge effects in a transfer map.

The map that we have gained from this method has al-
lowed us to look deeply at what is happening to the dynam-
ics of the beam at the map level. We can calculate how the
effects of space charge can alter the tune of the map as well
as the chromaticity. Since this method will give a direct nu-
merical value for these quantities in the presence of space
charge they can be used to calculate an objective function
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Figure 9: (color) The first graph is a tune that initially starts
out as a 90◦ phase advance cell, but is subjected to an in-
creased amount of space charge. Below is the chromaticity.

in a fitting algorithm, thus allowing a user to determine di-
rectly how to counteract the actions of space-charge in an
accelerator. Further work also involves using a fast multi-
pole method to help with the tracking of particles that fol-
low a distribution that is not easily modeled using a Taylor
series.
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