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Abstract 
The future electron-ion collider eRHIC - under design 

at BNL - will collide the electron beam accelerated in  
energy recovery linacs with protons or ions circulating in 
the RHIC storage ring. The beam-beam effects in the 
linac-ring configuration have a number of unique features.  
For the in-depth studies of the beam-beam effects and the 
resulting luminosity limitations, we developed a dedicated 
simulation code. We studied the effects of the mismatch, 
the disruption and the pinching on the electron beam. 
Relevant dynamics of the proton beam, including the kink 
instability in combination with incoherent beam-beam 
effects, was also explored in detail. In this paper we 
describe the main features of our simulation code and 
present the most important simulations results.  

INTRODUCTION 
Several designs of electron-ion colliders are under 

development in the world [1]. The design of electron-ion 
collider eRHIC at BNL adds an electron accelerator, 
based on energy recovery linacs (ERLs), to the existing 
heavy ion accelerator complex RHIC [2]. The eRHIC 
design uses a so-called linac-ring collision scheme. The 
electron beam, accelerated in the ERL, passes a collision 
point just once, while the proton (or ion) beam circulates 
in a ring and passes the collision point on every turn. 
There may be several collision points in the collider, 
although in this paper we show the simulation results for 
the case of one electron-proton collision.  

Since the electron beam goes through the collision 
point(s) only on one pass, the allowed strength of the 
beam-beam force acting on the electron beam can be 
much large than for electrons circulating in a storage ring. 
Thus a typical beam-beam limit for electrons  in circular 
colliders can be surmounted. The resulting eRHIC 
luminosity in the linac-ring scheme is considerably larger 
than that in the ring-ring scheme. Present eRHIC design 
aims at the luminosity of e-p collisions exceeding 1034 

cm−2s−1.  
The studies of the beam-beam interactions in the linac-

ring collision scheme is very important eRHIC R&D item. 
Since there has been no collider based on the linac-ring 
collision layout, there is no any operational experience 
with the linac-ring beam-beam interactions and the related 
machine performance limits. Thus all features of beam 
collisions in the linac-ring scheme have to be thoroughly 
studied during the machine design. This would allow to 
determine the maximum achievable luminosity and to 
identify and address possible problems originating from 

the beam-beam interactions. One should note that the 
linac-ring collider scheme have been considered in 
previous years for accelerator designs, for example, as 
possible design for B-factory. Hence, the specific features 
of the linac-ring beam-beam interactions had been also 
studied [3,4]. For eRHIC, the following features of the 
beam-beam interactions have to be considered and 
investigated: 

-The electron beam disruption. The level of the 
disruption should be acceptable for the electron beam 
transport and deceleration in the ERL. 

-The electron beam pinch, the related enhancements of 
the luminosity and the beam-beam effect on the proton 
beam.  

-The kink instability of the proton beam. 
-The effect of fluctuating electron beam parameters 

(intensity, transverse emittance) on the proton beam. 
 
A comprehensive study of the list above require a full-

blown simulations of the beam-beam effects including the 
nonlinearity of beam-beam force, the variation of beta-
function throughout the collision region, synchrotron 
oscillations of the proton beam, chromaticity and 
amplitude-dependence of proton betatron tunes. A code 
EPIC was created [5 ] to carry out the detailed and time-
efficient studies of the beam-beam effects in eRHIC.   The 
following section provides description of the EPIC 
simulation code. In later sections we present some results 
of the beam-beam simulations and discuss the influence 
of those results on the collider design.  

THE BEAM-BEAM INTERACTION 
MODEL AND SIMULATION CODE 

The EPIC code takes into account two considerable 
asymmetries in the eRHIC collision scheme. One is the 
asymmetry of the strength of the beam-beam force acting 
on the electrons and the protons. Both in terms of the 
beam-beam parameters (ξp=0.015, ξe = 2.2), and in the 
terms of the disruption parameters (Dp = 0.007, De = 27) 
the beam-beam effect on the electron beam is much 
stronger compared with that on the hadron beam. Because 
of the strong beam-beam effect the electron beam gets  
disrupted during the pass through the collision region. In 
contrary to that, the beam-beam effect on the protons is 
moderate, and the effect of the interactions becomes 
important on the scale of thousands and million turns. The 
strong asymmetry of the beam-beam effects is used in the 
EPIC simulation code to separate the study of one pass 
effect of the electron beam disruption and multi-turn 
effect of the beam-beam interaction on the proton (ion) 
beam.   
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Another asymmetry is the difference in the bunch lengths 
of electron and proton beams (σle = 2mm, σlp > 5cm). 
Hence, the short electron beam can be considered as an 
infinitely thin slice, when simulating the beam-beam 
effect on the protons.  
The EPIC code uses two presentations of the beam-beam 
force. In one presentation, the force is calculated 
assuming the Gaussian transverse distribution. For eRHIC 
where both beams are round at the collision point, the 
force expression is simplified to the radial force:  

Fr =
ne2

πε 0r
1− exp(−

r2

2σ 2 )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 

(1) 

where n(s) is the longitudinal charge density and σ is the 
transverse beam size. In the EPIC code both full form of 
the beam-beam force (1) as well as linearized presentation 
of this force can be used. 
In second presentation, the force is calculated for the 
round beam using the Gauss law. This force presentation 
can be used for calculating the force produced by the 
infinitely thin electron beam:  

Fr ds =
Ne (r)e2

πε 0r
 

 

(2) 

 
Here Ne(r) is the number of electrons within the radius r.  
The approach realized in the EPIC code for the simulation 
of the beam-beam interaction consists of the inter-
connected and consecutive applications of two “strong-
weak” simulations, one for the propagation of the electron 
macro-particles through the field of the proton beam and 
another for the propagation of the proton macro-particles  
through the field of the electron beam. 

Simulation of the Effects on Electron Beam  
Since the distribution of the proton beam is only weekly 

affected by the beam-beam force in one pass, for the study 
of the electron disruption the proton beam can be 
considered undisturbed. Therefore, the strong-weak 
scheme can be applied in the simulations. The proton 
beam is divided in longitudinal direction in multiple 
slices. Each slice is treated as an infinitely short bunch 
with a transverse Gaussian distribution generating the 
electric field according to the equation (1). Typically the 
use of 20 (or more) slices is adequate for providing 
consistent results. The longitudinal Gaussian distribution 
of the proton beam is considered Gaussian with tail cut-
off typically selected at 4σlp. The variation of the 
transverse rms beam size of the proton beam due to the 
variation of the proton beta-function throughout the 
collision region is taken into the account in the slicing 
procedure. 

The electron beam is represented by macro-particles 
that experience consecutive kicks from the interactions 
with the proton slices. The macro-particles can be 
generated with a desirable initial transverse distribution 

(Gaussian or Beer-Can distributions has been usually used 
in the simulations). Symplectic integrator up to 3rd order is 
used to propagate the electron macro-particle through the 
sequence of the proton beam slices. Following the 
modification of the electron beam distribution during the 
interaction process, the electron beam parameters, such as 
the transverse emittance, the beam size, transverse 
distribution moments, optical functions (beta and alpha 
functions) can be calculated by post-processing the 
macro-particle data. Usually, at least 50 thousand macro-
particles have been used for the electron distribution. In 
order to determine the electron beam and optics 
parameters throughout the collision region, 3rd order 
spline function is applied to the corresponding data points 
calculated at the proton slice locations. The collision 
luminosity, modified by the electron beam pinching, is 
also calculated. 

Simulation of the Effects on Proton Beam 
In order to study the multi-turn effect of the beam-beam 

interaction on the proton beam, the proton beam is 
presented by a collection of macro-particles.  Initially the 
macro-particles are distributed in all three dimensions 
according to the input beam size parameters and then they 
are propagated through the field of the electron beam. As 
was already mentioned, due to the short length of the 
electron beam, the electron beam can be considered as an 
infinitely thin slice.  

On each turn the interaction of the proton beam with the 
electrons is considered in two steps. On first step the 
effect on the electron beam is evaluated using the 
approach described in the subsection “Simulation of the 
Effects on Electron Beam”. As the result, the data for 
continuous evolution of the electron transverse beam size 
and the electron slice transverse position throughout the 
collision region are obtained. Thus, on the second step, 
the beam-beam force can be calculated either using (1) 
with the electron beam size or using (2) with Ne(r) 
dependence. The force calculation is done at the proper 
longitudinal coordinate of the interaction of the electron 
beam slice and a proton macro-particle. The electron slice 
transverse position offset is also taken into the account in 
the calculation. 

Following the beam-beam interaction, the proton beam 
is transported through the one turn of the accelerator ring, 
using one turn transformation matrix. The one turn 
transformation includes the effect of the chromaticity and 
amplitude dependent betatron tune. It also executes the 
synchrotron oscillations in the longitudinal plane. 

Since at every turn the protons encounter a new 
electron beam, coming from the linac, the initial 
parameters of the electron beam can be varied from one 
turn to another.  

On the basis of the obtained simulation data for the 
proton macro-particles the multi-turn evolution of the 
proton beam emittances and the transverse orbit offsets 
can be obtained using the data post-processing. 

Further details on the EPIC code can be found in [5]. 
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