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Abstract 
A number of high-intensity, multi-GeV 

superconducting RF (SRF) proton or H- linacs are being 
developed or proposed throughout the world. The 
intensity frontier, having been identified as one leg of the 
future of particle physics, can be addressed by the 
development of such a linac. All these accelerators will 
place strict demands on the required beam diagnostics, 
especially in the development of none or minimum 
invasive monitors such as beam profile and halo monitors.  

An H- / proton beam test facility is currently under 
construction and commissioning at Fermilab. It serves as 
a test bed for the development of critical beam 
manipulation and diagnostics components for the 
anticipated Project X, Fermilab’s SRF multi-MW, multi- 
GeV linac. The paper will discuss the beam diagnostic 
needs for these high-intensity linacs in particular the role 
of the Project X test facility for development and testing 
of these beam instrumentation systems. 

INTRODUCTION 
Table 1: High Power SRF Linacs 

 SNS SPL ESS Myrrha PX 

E [GeV] 1,3 5 2.5 0.6 3 

P [MW] 3 4 5 2.4 3 

Ipulse [mA] 42 40 50 n/a n/a 

Iave [mA] 2.5 0.8 2 4 1 

duty fact. [%] 6 2 4 CW CW 

pulse len. [ms] 1 0.4 2 n/a n/a 

rep. freq. [Hz] 60 50 20 n/a n/a 

 
Table 1 gives an (incomplete) overview of existing 

(SNS) and planned high power SRF linacs for protons or 
H-. Some of the high level parameters presented are 
anticipated after upgrades or improvements. All facilities 
have a multi-MW beam power at high kinetic energies 
and therefore operate beams with high risk potential to 
damage or destroy accelerator components, if miss-
steered or of insufficient quality. Already small beam 
losses can cause major trouble in close proximity of SRF 
accelerating structures. As a rule of thumb the maximum 
beam loss along the SRF linac should not exceed an 
equivalent of 1 W/m. 

A precise control and high stability of the guide fields 

is mandatory, and has to be verified by a set of reliable 
beam diagnostics, distributed along the linac. Essential 
are the measurement of 

• Beam trajectory – BPMs 
• Beam phase, TOF – BPMs, WCM, EO-methods 
• Beam intensity – toroids, WCM 
• Beam losses – BLM / TLM (e.g. ion chamber) 
• Beam profile / emittance and halo – SEM, wire 

scanner, Allison scanner, slits, laser diagnostics, 
e-beam scanner, IPM, vibrating wire, etc. 

• Bunch profile and tails – Feschenko monitor, 
laser diagnostics 

Most beam parameters can be diagnosed with non-
invasive, i.e. electromagnetic methods, or by detecting 
particle showers outside the vacuum system. The non-
invasive measurement of transverse and/or longitudinal 
profiles however, remains challenging, particular if photo 
detachment methods (laser diagnostics) cannot be applied, 
i.e.  monitoring of proton beams. The cryogenic 
environment of a SRF linac gives additional challenges 
for the beam instrumentation hardware, thus the 
segmentation and warm diagnostics sections along the 
linac are crucial. Except for simple BPM pickups and 
BLM detectors outside the beam vacuum system, no 
beam diagnostic detectors are foreseen in the cryogenic 
parts of the planned SRF linacs. Even if located in warm 
sections, but still nearby SRF structures, invasive 
diagnostics may produce too much unwanted spill of 
dissociated material, and can contaminate the niobium 
surface of the cavities. And finally, invasive diagnostics 
are of very limited use in the final, high beam power 
sections of the accelerator, just because of too high 
residual losses, even a single wire interacting with <0.1 % 
on a multi-MW beam produces kW beam losses. 

PROJECT X 
Fermilab’s anticipated high intensity accelerator future 

is called “Project X” [1]. Major goals are the support of 
high energy physics (HEP) at the intensity frontier to 
study rare processes (kaon and muon physics), research in 
nuclear physics and energy, as well as a staged path 
towards science at the energy frontier, i.e. utilize Project 
X as a source for a neutrino factory and/or muon collider. 

Central element of the Project X accelerator complex 
will be a 3 GeV SRF CW linac, accelerating H- to 3 MW 
beam power (see Figure 1). A system of magnetic and RF 
beam splitters feeds various experiments simultaneously, 
as well as a pulsed SRF linear accelerator extension – in 
favour to a RCS – to accumulate H- particles using foil or 
laser stripping at 8 GeV into the existing Recycler / Main 
Injector ring accelerators. 

 ___________________________________________  
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