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Abstract

Significant progress has been made recently in the un-
derstanding of the effects of direct space charge on the
transverse head-tail bunch dynamics. Different analytic
approaches for head-tail modes in bunches for different
space-charge parameter regimes have been suggested. Be-
sides head-tail eigenmode characteristics, Landau damp-
ing in a bunch exclusively due to space charge has been
predicted. In this contribution we compare results of par-
ticle tracking simulations with theoretical predictions for
the eigenfrequencies and eigenfunctions of head-tail modes
in a Gaussian bunch. We demonstrate the space-charge
induced Landau damping in a bunch and quantify damp-
ing rates for different modes and space-charge tune shifts.
Under conditions below the mode coupling threshold we
study the head-tail instability with space charge. Our re-
sults show that the space-charge induced damping can sup-
press the instability for moderately strong space charge.
For strong space charge the instability growth rates asymp-
totically reach constant vales, in agreement with theoretical
predictions.

INTRODUCTION

The standard head-tail theory, i.e. the model of Sacherer
[2, 3], does not include the effect of an incoherent tune
spread on head-tail modes. A model for the head-tail in-
stability with arbitrary space charge has been suggested
in Ref. [4], for a bunch in a square-well potential and an
airbag bunch distribution in the longitudinal phase space.
Only in recent works [5, 6] analytical treatments of head-
tail modes with space charge for realistic bunche distribu-
tions (as e.g. Gaussian) have been proposed. However, nu-
merical simulations appear to be indispensable for a com-
prehensive stability analysis in different beam parameter
regimes and with various collective effects taken into ac-
count. Here, we present particle tracking simulations for
head-tail modes in a Gaussian bunch with space charge.
We use two different particle tracking codes, PATRIC [7]
and HEADTAIL [8], in order to compare different numer-
ical implementations. As an exemplary instability driving
source, the resistive-wall impedance is considered. In this
work we consider the single-bunch head-tail instability for
the parameters well below the threshold for mode coupling.

An important phenomenon, discussed in Refs. [5, 6],
is Landau damping in a bunch exclusively due to space
charge. In a coasting beam space charge can not provide
Landau damping of its own, even if the coherent frequency

overlaps the tune spread induced by nonlinear space charge
[9]. In the case of a bunch, the synchrotron motion plays
an important role and the space-charge tune spread due
to the longitudinal density profile provides Landau damp-
ing. Here, we demonstrate this Landau damping in particle
tracking simulations and examine its role for the stability
of head-tail modes at moderate and stronger space charge.

BUNCH SPECTRUM WITH SPACE
CHARGE

There is no simple analytical answer for the space-
charge effect on head-tail modes in bunches with an arbi-
trary bunch profileλ(τ). However, such a theory could
be very useful for code validation and for the interpre-
tation of simulation results. An analytical solution for
head-tail modes in bunches with arbitrary space charge has
been derived in Ref. [4]. The model assumes an airbag
distribution in the longitudinal phase space and a square-
well (or barrier) potential and thus a constant line den-
sity, which means a constant∆Qsc. The longitudinal mo-
mentum distribution has two opposing flows of particles
[

δ(v0−vb)+δ(v0+vb)
]

, the synchrotron tune in this bunch

is Qs = vb/(2τbRf0), whereτb is the full bunch length
andf0 is the revolution frequency. The model considers
“rigid flows”, i.e. only dipole oscillations without variation
in the transverse distribution of the flows are included. It
also assumes that all betatron tune shifts are small com-
pared to the bare tune|∆Q| ≪ Q0. The resulting tune
shift due to space charge (without impedances) is given by

∆Q = −∆Qsc

2
±
√

∆Q2
sc

4
+ k2Q2

s , (1)

where ”+” is for modesk ≥ 0.
In order to verify the space-charge implementation for

long-time simulations with a particle tracking code, we
have introduced the barrier-airbag bunch distribution in
both PATRIC and HEADTAIL codes. For the transverse
space charge force, the “frozen” electric field model was
used, i.e. a fixed potential configuration which follows the
mass center for each single slice. This approach is justi-
fied for the “rigid-slice” regime and can be considered as a
reasonable approach for moderate and strong space charge
[10, 5]. A round transverse cross-section and a homoge-
neous transverse beam profile were used in the simulations
in this work. An excellent agreement between the airbag
theory [Eq. (1)] and simulations has been achieved, a de-
tailed description of the code validation was presented in

,
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Ref. [11].
For a realistic case, we consider a Gaussian bunch, i.e.

a Gaussian line density profile and a Gaussian momentum
distribution. Coherent oscillation spectra for bunches with
q = 5 andq = 20 are shown in Fig. 1, where we introduce
a space charge parameterq = ∆Qsc/Qs. The space charge
parameterq is calculated for the peak value of∆Qsc in the
bunch center. Head-tail eigenfrequencies from the airbag
theory are given in Fig. 1 with red dashed lines. The dif-
ferences in the tune shifts between the Gaussian bunch and
the airbag bunch are below≈12% for q = 5, and below
≈5% in the case ofq = 20. Especially for strong space
charge the airbag theory Eq. (1) gives a surprisingly good
prediction for the bunch eigenfrequencies, even in the case
of a Gaussian bunch, which can also be seen using results
of Refs. [5, 6].
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Figure 1: Transverse bunch spectrum from simulations for
a Gaussian bunch with space charge: top plotq = 5, bot-
tom plot q = 20. Red dashed lines are head-tail modes
for the airbag bunch, Eq. (1). To clarify the notation we
note that the eigenfrequencies without space charge are
(Q − Q0)/Qs = 1 for k = 1, (Q − Q0)/Qs = 2 for
k = 2, etc.

LANDAU DAMPING DUE TO SPACE
CHARGE

In simulations for a Gaussian bunch we have observed
Landau damping due to the effect of space charge. This
kind of damping is provided by the variation of the space-
charge tune shift along the bunch which causes a tune

spread. Note that this is in opposite to a coasting beam,
where space charge can not produce Landau damping of its
own. A regular exponential decrease of the mode ampli-
tude in time has been observed. Results of a space charge
scan for the modesk = 1 andk = 2 are presented in Fig. 2.

In order to characterize bunch Landau damping for dif-
ferent head-tail modes and bunch parameters we consider
an initial perturbation with an eigenmode. As a reasonable
approximation, we trigger ak–mode of the airbag bunch
[4] xk(τ) = A0 exp(−iζτ) cos(kπτ/τb) and follow the
time evolution of the perturbation. Hereζ = ξQ0/η is the
normalized chromaticity,∆Qξ/Q = ξ∆p/p, η is the slip
factor. Using our simulations it is possible to demonstrate
that, on the one hand, the eigenmodes in a Gaussian bunch
are very close to the airbag modes, and on the other hand,
to compare these eigenmodes with the eigenfunctions ob-
tained in Refs. [5]. For this, we start with the airbagxk(τ)
for k = 1 andk = 2 with q = 6, ξ = 0 and observe the
bunch dipole traces after approximately two damping times
of k = 2. A comparison of these numerical traces (red
lines) with the airbag eigenmodes (blue lines) and with the
eigenfunctions from [5] (green lines) is presented in Fig. 3.
For the airbag modesτb = 4σz/R was chosen, whereσz is
the rms bunch length of the Gaussian bunch. Starting with
the airbagk = 1 mode, there is no contribution fromk = 0
andk = 2 because it is an odd function. Fork = 2, the
k = 1 mode is excluded because it is an even function, and
we exclude thek = 0mode by making the integrated bunch
offset zero. Additionally we note that in the case of a large
difference between the true eigenmode and an approxima-
tion, this difference is given by modes of higherk, which
are Landau damped much faster than the mode considered.

Landau damping examples are shown in Fig. 4, where
the momentumMk =

∫

xcode cos(kπτ/τb)dτ is plotted
turn-by-turn for two cases; herexcode(τ) is the simulation
output. Simulations for bunch truncations between2σz and
3σz of the half-length did not provide significant differ-
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Figure 2: Damping decrement of thek = 1 andk = 2
modes obtained from simulations for a Gaussian bunch,
Qs = 0.01.
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Figure 3: Dipole moments from simulations for a Gaus-
sian bunch (red lines), theory eigenfunctions for a Gaus-
sian bunch from Refs. [5] (green lines) and dipole moments
with the beam offset for analytical eigenmodes of an airbag
bunch (blue lines).
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Figure 4: Simulations with a Gaussian bunch: examples for
Landau damping due to the space-charge effect in a bunch
for k = 1 (red line) andk = 2 (blue line),Qs = 0.004.

ences. For stronger space charge, the longitudinal bunch
tails above2σ should be important for Landau damping.

The effect of Landau damping can be also observed on
the bunch spectra in Fig. 1. The modesk = 2 andk = 3
are strongly damped atq = 5 (the top plot), which is not
the case atq = 20 (see the bottom plot in Fig. 1).

We discuss now a physical interpretation of Landau
damping observed in the simulations. The explanation
is illustrated in Fig. 5. Due to the line density variation
along the bunch, particles with different synchrotron ampli-
tudes have different space-charge tune shifts. Thus we con-
sider the incoherent spectrum related to a chosenk-mode.
The upper boundary of the effective spectrum, which is
given by particles with large synchrotron amplitudes, can
be roughly estimated from the longitudinal average of the
space-charge intensity. Assuming±2σz as the relevant
area for the efficient space-charge tune spread, and taking
into account the modulation by the synchrotron motion,

∆Qmax ≈ −0.23Qsq + kQs , (2)

see Fig. 5. This part of the incoherent spectrum is rele-
vant for the resonant interaction with the coherent oscilla-
tion since it is close to the coherent frequency, see Fig. 5.

The lower boundary of the incoherent spectrum∆Qmin,
which is located well below the coherent line, corresponds
to the strongest space charge tune shift and is represented
by the particles with small synchrotron amplitudes. As we
demonstrate in Fig. 1, the airbag theory is a good approx-
imation for the space-charge frequency shifts of head-tail
eigenmodes even for a Gaussian bunch. If we suggest that
transverse Landau damping due to space charge should be
active when the coherent head-tail mode lies within the
effective spectrum, we would expect the area of Landau
damping to be as illustrated in the bottom plot of Fig. 5.
Note that the dependencies of the damping rates onq in
Fig. 2 are qualitatively similar to the curves in the bottom
plot of Fig. 5.

From this interpretation of bunch Landau damping it is
easy to see that the resonant interaction between the co-
herent mode and individual particles should happen in the
bunch tails, as it is also discussed in [5]. Indeed, parti-
cles in the effective spectrum close to∆Qmax have large
synchrotron amplitudes and this part of the effective spec-
trum is the closest to the coherent frequency, see Fig. 5.
In order to support this argumentations, we consider the
trasverse rms beam size along the bunch in a damping sim-
ulation. The energy transfer from the coherent motion to
the incoherent oscillations should lead to an increase of the
individual betatron amplitudes, which, in turn, can increase
the local rms beam size in bunch tails. Figure 6 shows the
rms beam size distribution along the bunch at the simula-
tion start, as the eigenmodek = 2 has been excited, and
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Figure 5: Illustration for the active area of the bunch Lan-
dau damping with the betatron tune shifts as functions of
the space-charge parameter. The red lines correspond to
the k = 1 mode, the blue dashed lines show thek = 2
mode. The parameter∆Qmax is the upper boundary of the
effective spectrum and∆Qairbag is the eigenfrequency of
the head-tail modes from the airbag theory Eq. (1).

Proceedings of HB2010, Morschach, Switzerland WEO1A02

Beam Dynamics in High-Intensity Circular Machines 417



 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

σ x
 / 

σ x
0

z / σz

N = 3 NLD
N = 1.7 NLD
N = 0.5 NLD
N = 0

Figure 6: Time developement of the trasverse rms beam
size along the bunch during Landau damping of thek = 2
mode atq = 3. Lines from bottom to top:N/NLD =
0, 0.5, 1.7 and 3;NLD is the inverse damping decrement
for this mode.

three curves during the damping phase. The rms beam size
increase in the bunch tails clearly indicates the resonant en-
ergy transfer.

An estimation for the Landau damping rate Im(∆Q) ∼
−k4Qs/q

3 has been obtained in Refs. [5] for strong space
charge, which was defined asq ≫ 2k. In this sense Landau
damping demonstrated in our simulations relates to mod-
erate space charge. Nevertheless, it is still interesting to
compare some ultimate points of Fig. 2 with this estima-
tion. This comparison shows a reasonable agreement for
the dependence of the damping rate on the mode number
and on the space charge parameter. However, the absolute
values for Im(∆Q) from our simulations are smaller by ap-
proximately an order of magnitude. Further simulations for
stronger space charge should shed more light on this issue.

HEAD-TAIL INSTABILITY WITH SPACE
CHARGE

The code verification in the case of head-tail modes with
space charge has been done using the airbag theory [4] with
a short range wake, for details see Ref. [11].

Here, we consider a Gaussian bunch and with the wake
function of the thick resistive wall,Wrw(z) ∝ 1/

√
z.

The effect of the wake is taken into account in the single-
bunch regime, multi-turn effects are not included. We con-
sider a beam below transition, thus three exemplar nega-
tive chromaticities were considered. A synchrotron tune
of Qs = 0.01 was chosen. Figure 7 summarizes results of
our particle tracking simulations. Without space charge, at
q = 0, we obtain the head-tail modesk = 1, k = 2 and
k = 3 as the most unstable modes for the respective chro-
maticity, and examine the effect of increasing space charge
for a constant impedance. A simulation is started with a
non-disturbed bunch and the instability development is ob-
served, thus this method provides only positive Im(∆Q),
the simulation points inside of the stable areas are not
shown for simplicity. The first important observations is
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Figure 8: Examples of bunch dipole traces of head-tail in-
stabilities from Fig. 7 for the head-tail phaseχ = 4.2. The
upper plot forq = 8 demonstrates thek = 2 mode, while
the lower plot forq = 16 shows thek = 3 mode.

that for moderate space charge Landau damping suppresses
all the head-tail modes, in agreement with the results of the
previous section. Secondly, for large∆Qsc, above the tune
shift range for strong Landau damping, the growth rates do
not experience significant changes with increasing space
charge. At the same time, lowest-order modes (k = 1 and
k = 2) leave the role of the strongest head-tail instability
to higher-order modes. An example of the most promi-
nent modes for different space charge strengths is shown in
Fig. 8.

The observation of the growth rate saturation for strong
space charge can be made in the analytic airbag theory [4]
for the short-range exponential wake. However, Landau
damping does not appear in this case due to a constant line
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density. On the other hand, the behavior of head-tail modes
at strong space charge can be understood in terms of the
calculations in Refs. [5], where the author argues that treat-
ing a wake as a perturbation provides the related tune shift
in the form of a diagonal element of the wake operator,

∆Q =
κ

Nionλ0R

∫ zb

0

dz

∫ zb

z

ds W (s− z)dk(s)d
∗

k(z) , (3)

where dk(s) = λ(s)xk(s),
∫

λ(s)ds = Nion, κ =
λ0q

2
ion/(4πγmω2

0Q0). In the case of the airbag bunch,
where the eigenfunctions do not depend on space charge,
this means that space charge has no effect on∆Q. Also
for an arbitrary bunch profile, e.g. Gaussian, the space-
charge induced deformation of the eigenfunctions is small
at strong space charge [5, 6]. Hence, the tune shift should
saturate with increasing space charge and Eq. (3) should
give an estimation for the mode growth rate at satura-
tion. Using this expression for the beam parameters in
our simulations, we obtain for the most unstable modes
Im(∆Q) = 0.06 × 10−3 (k = 2) for χ = 4.2 and
Im(∆Q) = 0.055× 10−3 (k = 3) for χ = 7.0. Hence, we
find a reasonable agreement between our simulations and
the ansatz Eq. (3) for estimations of the head-tail instability
growth rates at strong space charge.

CONCLUSIONS

The effect of space charge on the weak head-tail insta-
bility has been studied using particle tracking simulations.
An analytical theory [4] for an airbag bunch with a short-
range wake was employed for code validation and for the
interpretation of realistic simulation results. The airbag
theory gives a good prediction of the bunch eigenfrequen-
cies, even in the case of a realistic Gaussian bunch. It has
been demonstrated that the transverse eigenfunctions in a
Gaussian bunch with space charge correspond to eigen-
modes obtained in Refs. [5], which, interestingly, are also
very close to the airbag [4] eigenmodes.

Landau damping of head-tail modes exclusively due to
transverse space charge was demonstrated in simulations
for a Gaussian bunch. The range of the space charge
strength where Landau damping is mostly prominent de-
pends on the mode indexk and can be understood using a
simple argumentation in terms of the mode eigenfrequency
and the band of incoherent frequencies. The time devel-
opement of the rms beam size confirmes that the resonant
energy transfer of Landau damping happens in the bunch
tails.

Simulations of the head-tail instability with space charge
and the resistive-wall impedance showed that Landau
damping can effectively stabilize the bunch at moderate
space charge. In agreement with the airbag theory and with
the results of Refs. [5], the instability growth rates saturate
at strong space charge. Absolute values of growth rates are
in a good agreement with the method [5] to estimate the
head-tail instability growth rates at strong space charge us-
ing a diagonal element of the wake operator Eq. (3).

Applying our results to experimental observations in ex-
isting machines and to future machines we discuss two in-
teresting examples. The head-tail instabilities observedin
CERN PS correspond rather well to the Sacherer theory [2],
as reported in [13]. Indeed, the space charge parameter for
bunches in CERN PS is of order ofq ≈ 150, which is far
above the range of Landau damping for observed modes.
On the other hand, at such a strong space charge the growth
rates of head-tail modes should be saturated and should not
be very different from the no-space-charge estimation. An-
other example concerns the nominal parameters for ura-
nium bunches in SIS100 [1, 14]. Here the space charge
parameter lies in the range ofq ≈ 20. Landau damping
might then give a significant contribution to the stability of
the head-tail modes.
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