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EFFECT OF SPACE CHARGE ON TRANSVERSE INSTABILITIES
V. Balbekov#, Fermilab, Batavia,IL 60510, U.S.A.

Abstract

Transverse instability of a bunched beam is discussed in
the paper with space charge effects taken into account. It
is assumed that the Space Charge Impedance is a
dominant part of the entire beam coupling impedance,
which is a very characteristic case for high-brightness
proton synchrotrons. Equation of intra-beam oscillations
is derived and investigated including shape and frequency
of the head-tail modes. Special attention is focused on
Landau damping and threshold of possible instability.

INTRODUCTION

Transverse coherent instability of a bunched beam have
been studied first by C. Pellegrini [1] and M. Sands [2]
with intra-bunch degrees of freedom taken into account,
but without space charge effects. A solution with these
effects was presented later by F. Sacherer using boxcar
model [3]. A crucial part of the space charge in Landau
damping and instability threshold of bunched beams was
demonstrated first in Ref. [4] for rather high synchrotron
frequency. Later the problems were studied in Ref. [5-7],
the last presenting most detailed study of the role of space
charge impedance in the bunched beams instabilities.

Space Charge Impedance (SCI) is a part of an entire
beam coupling impedance, which takes into account only
local electromagnetic field carried by a beam. It is a
purely imaginary value not depending on frequency and
unable to cause the beam instability by itself. Real part of
the impedance is just the one directly responsible for the
instability. In principle, any retarding (wake) field is
capable to generate such an addition. However, SCI can
drastically affect intra-bunch coherent oscillations (head-
tail modes) including their frequency, shape, and
particularly threshold of possible instability. The effect is
especially important in proton synchrotrons where SCI,
typically, constitutes a significant or even dominant part
of the impedance. Under these assumptions, the wake
field can be treated as a small perturbation which controls
mutual motion of the bunches (collective beam modes)
including the instability growth rate. Just from this
standpoint the problem is treated in this work. Incoherent
space charge tune shift is used further as a convenient
measure of the SCI.

COASTING BEAM LANDAU DAMPING

It is a well known fact that, at dominant SCI, transverse
instability of a coasting beam is possible if space charge
tune shift about exceeds the incoherent tune spread:

AQincoherent > (X 6Q: C=1 (1)
This relation has a simple physical explanation:
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Self-sustaining coherent oscillations of a beam are
impossible if their frequency falls within a range of
incoherent betatron frequencies.
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Figure 1: Landau damping origin of coasting beams.

Figure 1 is provided to illustrate the statement. Blue curve
present a bare tune distribution, red one — the same
distribution shifted by space charge force, and vertical red
line depicts the coherent tune. Two cases are possible as it
is shown in the picture. At comparably low intensity, the
coherent tune could not leave the incoherent range (left-
hand figure). Then the attendant electric field would
excite contra-phase oscillations of particles, which
individual tunes are located either lower or higher the
coherent one. That would result a quick transfer of energy
from coherent form to incoherent one, that is the beam
heating and decay of the coherence. This effect is known
as Landau Damping (LD). It does not arise at higher
intensity when the coherent frequency leaves the
incoherent range (right-hand figure). Then the coherent
field excites in-phase oscillations of all the particles,
supporting the coherence and creating conditions for
instability. As it is seen from the picture, corresponding
instability condition is

MQincoherent - AQcoherentl > 6Q (2)

This relation can be written down as Eq. (1) because
AQcon « AQjneon n practice. Coefficient C depends on the
bunch shape being about 1.2—1.1 for Gaussian distribution
truncated on the level of (3-5)0.

BUNCHED BEAM LANDAU DAMPING

There is no doubt that above declared principle is valid
for bunched beams as well. However, very different
physical phenomena can be responsible for incoherent
tune spread of coasting and bunched beams. In first case,
the main source is, usually, momentum spread multiplied
by chromaticity. However, as it was shown in Ref. [1] and
[2], the instability threshold of bunched beams does not
depend on chromaticity at all (though the instability
growth rate can drastically depend on it). It means also
that averaged in synchrotron phase tunes of the particles
and corresponding tune spread only can affect coherent
transverse motion of the bunch.
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From this point of view, essentially lower instability
threshold could be expected in bunched beams in
comparison with coasting ones, at about the same
intensity, emittance, etc. However, it would be a hasty
conclusion because an additional source of the spread
appears at the bunching. [t is space charge tune shift
itself because it depends on a particle position in the
bunch or — after the averaging — on amplitude of
synchrotron oscillations [4]. It is clear that corresponding
tune spread is proportional to SCI and beam intensity —
the fact which creates rather specific conditions for the
Landau damping and the instability threshold.

In principle, tune spread caused by nonlinearity of
betatron oscillations should be taken in the consideration
as well. However, nonlinearity of external magnetic field
is relatively small usually that is can be neglected in
practice. As for own beam field, its nonlinearity and
corresponding tune spread do not affect coherent motion
at all, as it is shown in Ref. [8].

Taking into account all these circumstances, one can
write down Eq. (2) for a bunched beam in the form:

(AQincoh)min < AQcoh < (AQincoh)max (3)

Right-hand part of this equation is satisfied automatically,
so only two cases could be actually possible. They are
sketched in Fig. 2, where both coherent tune shift and
incoherent tune spread are presented. Landau damping
appears if the shift is rather large (left-hand picture).
Because all the tune shifts are proportional to the intensity
and SCI, it could be expected that the bunch shape and
synchrotron frequency are important for the instability
threshold as well. Particularly, long tail of the distribution
certainly should increase chances of the Landau damping.
On the other hand, any bunch has a lot of eigenmodes
some of them being probably unstable. Therefore
additional theoretical analysis is needed to make more
distinctive conclusions.
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Figure 2: Landau damping origin of bunched beams. Left-
hand — stability, right-hand — instability.

EQUATUIN OF BUNCHED BEAM
COHERENT OSCILLATIONS

Let a bunch execute coherent oscillations with
horizontal deviation X(z,6,p) in the point (6p) of
longitudinal phase space and X(t,8) in average. These
variables are coupled by the relation:

p(0) X(t,0) = j FO.mX(E0,pdp ()
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where F(6,p) is longitudinal distribution function of the
bunch, and p(#) is its linear density. Designating
horizontal electric field of the steady-state bunch as
E(0,x,y) one can write equation of betatron oscillations of
a single particle as

dx: X agey eE(H x; — X(t,0),y)
dt?

my3

+ (wake) (5)

where revolution frequency 2 and bare tune QO depend on
the particle momentum. Note that incoherent space charge
tune shift of the particle depends on its amplitude,
because E(6,x,y) is nonlinear function of transverse
coordinates. Wake field is hidden here but actually it is
negligible in first approximation, by assumption.

With steady-state transverse density p/x,y), coherent
displacement is:

X(t, 0,p) = f pt(x —X(t,0, p)) xdx (6)

While the deviation is small in comparison with the beam
radius, it satisfies the /inear equation:

2

d<X 7
o+ 0202 = 2030,00(X ~ ) ©®)

with effective tune shift which depends only on 6:

20(6) = [ 5 Gayptiay @

2m V3QoQo

It proves the statement which was actually used above:
nonlinearity of space charge field and related tune spread
do not affect coherent motion and cannot contribute to
the instability frequency and threshold. The effective
tune shift AQ(6) is proportional to the longitudinal density
p(@) and depends on transverse density pAx,y). It
coincides with usual incoherent tune shift if the beam has
elliptic cross section and constant density. For Gaussian
beam, it is a half shift of small betatron oscillations [8].

Because AQ « O, Eq. (6) can be reduced to the first
order form:

X 00X ~
2 W

i2,4Q(0)(X — X) (8)
This equation describes both coasting and bunched
beams. The choice dependence on the operator d/dt which
is global time derivative including longitudinal motion:

_ d 9 9

Coasting beam: priariu [2(p) — 2] T (9a)

Bunched b : d 9 + 0, — 0 9b
unched beam: - = 72+ 05 7 (9p)

where Q; and ¢ are synchrotron frequency and phase.
Therefore, taking the explicit dependence of all the
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variables on time as exp(-iwf), one can represent Eq. (8)
for a bunch in the form :

).
wX — QOQX +i0

S —2,40(0)(X —X)

(10

Because frequency of betatron oscillations Q20 depends
on momentum, chromaticity appears in this equation as a
parameter. However, it influence only eigenfunctions X
but not the eigenfrequencies w. It can be shown with help
of transformation:

a(2Q)/dp

X(6,p) = Y(6,p) exp(=ix6), a0y

X = (11)

New variable Y satisfies an equation which looks like Eq.
(10) with central frequency 2,0, instead of Q(p)Q(p).
Therefore its solutions do not depend on chromaticity,
including coherent frequency @ which is the same in both
equations. Thus, instability frequency and threshold of a
bunched beam do not depend on chromaticity. However,
shape of the oscillations, wake field, and consequently the
instability growth rate can depend on it [1-2].
It is more convenient further to use the parameters:

=040 0

vEo——o—, W=
'QOAQmax 'QOAQmax

(12)

Besides, we will normalize the distribution function to
satisfy the condition p(0)=1. Then total set of equations
for the function Y is:

vY + iug—z; =—p@B) Y -Y) (13a)

p(6)Y(6) = [ F(6,p)Y (6, p)dp (13b)
It is easy to check that all its eigenvalues are real, both
with and without Landau damping (as long as wake field
is not included). This statement does not contradict the
possibility of Landau damping, but it means that decay of
an initial perturbation caused by the LD is generally a
non-exponential process.

Rigid Mode

Eq. (13) has a universal solution which does not depend
at all on the distribution function, space charge tune shift,
and synchrotron frequency:

Y@,p)=Y(0)=1, v=0 thatis w=.0,Q,
It is known as rigid mode because, at zero chromaticity,
the bunch oscillates as a solid without twist and rotation.
With chromaticity, traveling wave is superimposed on the
bunch oscillations as it follows from Eq. (9). In used
approximation, this mode is never prone to Landau
damping being potentially unstable at any intensity. Of
course, the threshold exists in reality, at least because of
the lattice nonlinearities, however, in practice it is very
low in comparison with similar coasting beam.
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Boxcar Model

One of the simplest and widely used assumptions is so
called boxcar model that is a bunch with constant linear
density. It is especially productive in our case because
allows to get analytical solution of Eq. (13) at any value
of the parameter u in form of Legendre polynomials [3]:

?(6) = FK(0)

Substituting it to Eq. (13) one can see that, at any n,
there are n+1 different functions Y,,,(6,p) satisfying the
conditions. Each of them is polynomial of power n+1 in
space of variables (6,p). Corresponding equations for v
are polynomial of power n+1, and all their solutions
(eigentunes) are real numbers. Some of them are plotted
against ¢ in Fig. 3. It is seen that all the curves take a start
either from point v=0 (i) or v=-1 (ii) at #=0. In usual units
it means: either bare betatron frequency w=0,0, (i) or
actual one w=Qy(Qyp-AQ) (ii). If the parameter u is
rather small, the coherent oscillations are almost linearly
polarized: either in @-direction (i) or in p-direction (ii).
However, the polarization becomes circular at g » 1:

Ymn(4, @) = Ry (A) exp(ime)

These eigenmodes are known as multipoles of index m.
At any m there are a lot of radial modes R, (4) which
characterize dependence of the eigenfunctions on
synchrotron amplitude. All of them are raised by different
Legendre polynomials and converge at the lines v = mu
with m=0, 1, etc.

o]

(@-2,Q,)(Q,AQ)

V=

1= Q/(QAQ)
Figure 3: Eigentunes of boxcar bunch.

INSTABILITY THRESHOLD

In normalized variables, condition of Landau damping
(3) could turn into —p(0) < v < —p(1) where
p(A) == [ p(A cos p) dop (14)

However, it is necessary to take into account that, at
coherent frequency w, spectrum of the force which acts
on particles can carry frequencies w+m&) with integer m.
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Corresponding normalized frequencies are v+myu, so the
instability condition should be used in the form:

-1 <v-—mu<—pQ) (15)
(remind that p(0) = 1). All the multipoles presented in
the eigenfunction Y, have to be examined, and Landau
damping will spring up if any of them satisfies Eq. (15).
Actually, the remaining multipoles at u — oo are
“suspicious” ones. For example, m = 0 is the only
harmonic inherent in the rigid mode.

Transformed eigentunes of the boxcar bunch are plotted
in Fig. 4. Of course, Landau damping cannot arise in this
case because of zero incoherent spread. However, for
better understanding of the problem, let us assume for a
moment that eigentunes of a real bunch have similar
behavior but there is an incoherent tune spread
corresponding p(1) = 0.5. Then stability region exists
which is marked in Fig. 4 by darker colors. It is seen that
the modes starting from point Av=u=0 are potentially
unstable at low u but can become stable at higher p. The
modes starting from point x =0, Av = -1 demonstrate
opposite behavior and have small (maybe zero) chance to
reach unstable zones. Higher eigenmodes are more stable
(prone to the Landau damping) in any case.
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Figure 4: Transformed eigentunes of boxcar bunch.

Unfortunately, for realistic distributions, the solutions of
Eq. (13) are achievable (as a rule numerically) only in
extreme cases i « 1 and u » 1. These zones are rather
approximately marked by green in Fig. 4. Note that
Landau damping cannot be seen at u « 1 because of
nature of this approximation. Therefore, each solution
should be extrapolated from its original zone into
neighboring “red” one to completed the picture. The
examples are given below.

Parabolic Bunch

Linear density of a parabolic bunch is

p(0)=1-06%  p(A)=1-A42)2.

Landau damping should appear at Av < -0.5 in this case.
The calculated eigentunes are shown in Fig.5 by solid
lines, both approaches ¢ « 1 and u » 1 being plotted and
extrapolated. For comparison, boxcar tunes are also
presented by dashed curves. A lot of potentially unstable
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modes (Av > -0.5) are seen at p <~1, eigentune of each
almost coinciding with the boxcar one. However, only
three of them remain unstable at p > 0.5: lower radial
modes of multipoles m = 0, 1, 2. Instability of these --
and only these -- modes is also confirmed by p » 1
approach. In this region, the eigentunes slightly exceed
the boxcar ones, as if they are pushed out by incoherent
tunes from their room. All other eigenmodes are singular
at large 4, forming continuous spectrum at Av <—0.5.

e
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00 05 10 15 20 25 30
1 =Q/(Q,AQ)

Figure 5: Transformed eigentunes and stability region of

parabolic bunch.

Gaussian Bunch

Truncated Gaussian distribution is considered in this
subsection:
2
1 ) 1

—-A
202

Focexp(

Results of calculations in low ux approximation are
presented in Fig. 6 at ¢ =1/3 (3o truncation). In this case,

Landau damping should arise at Av < —p(1) = —0.274.
Actually, a lot of unstable modes exist at 4 <~0.6 (AQ
>~1.7 Qy,), but almost all of them go down to the stable
zone at more u (Fig. 6). High u approach confirms that
all these modes are prone to Landau damping, have a
singularity, and form continuous spectrum at Av<-0.274.
Rigid mode is the only solution which is unstable at any
conditions (magenta line in Fig. 6).
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Figure 6: Transformed eigentunes of Gaussian bunch
truncated on 3o level.
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Some eigenfunctions of the Gaussian bunch are plotted
in Fig. 7. Low p approximation is used to plot the left-
hand graph, actually at u=1E-4 and at x=1. It is seen that
the bunch edges are more excited at higher u (lower space
charge) when coherent frequency comes nearer to the
incoherent boundary. However, Landau damping is
excluded in this approximation, so the deviation remains
finite. High # approximation should be used to make this
effect clearly visible. Related results are presented in the
righ-hand picture where the bunch dipole moment is
plotted vs 6. Magenta curve presents the rigid mode
which coincides with the bunch linear density in this
format. Next modes demonstrate infinite growth in the
bunch tails what is certainly a sign of Landau damping.
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Figure 7: Eigenfunctions of Gaussian bunch. Left/righ
graphs — low/high u approximations.

BUNCHED BEAM COLLECTIVE MODES

If some intra-bunch mode ¥ (8) is not prone to Landau
damping, collective bunch oscillations are possible with
linear density of dipole moment in the form:

D(t,0) = chjlvjp(ej) Y(0;) p(©;) exp(—ix0; — iwt)

where C; and N, are amplitude and intensity of j-th bunch,
0,=0—0,—Qyt is current position of its center. Wake field
of this beam should be found and substituted to initial
equations as a small perturbation. It will result in a set of
linear equations for coefficients C; at eigenfrequency .
As a rule, it is a complex number describing growth or
decay rate of obtained collective mode. Concrete result
depends on specific wake shape, but some common
features can be referred.

If the wake is short and does not reach neighboring
bunches, the formal solution is 4,=d;, that is all bunches
oscillate separately and independently. Another known
case is symmetric beam consisting of K alike and
equidistant bunches. Then, independently on the wake
field nature, all collective modes are the waves:

A =exp (Zm' %),

In all the cases the field rather strongly depends on
chromaticity which influences the instability growth rate
and can transform unstable collective modes to stable one
(or vise versa). Usually it is used to control stability of the
rigid based collective modes. As it was shown, LD is an
effective way to prevent instability other rigid modes.
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However, the perturbation method is unsuitable for very
low 1 when all basic eigentunes converge in the point v=0
as it obvious from in Fig. 3-6. The same follows also
directly from Eq. (13) which can be satisfied by any
function Y(0) at u=v=0. Wake field should be included in
consideration from very beginning onder these conditions.
In the extreme case u = 0, corresponding equation is:

vY =Wy

with a wake field operator in the right-hand part. It is
somewhat unexpectedly that the space charge drops out
this equation at all, though the condition # = 0 can mean
not only very low synchrotron frequency but extremely
large space charge tune shift as well.

SUMMARY

Transverse coherent instability of a bunched beam is
considered in the paper with space charge effects taken
into account. The basic assumption is a domination of the
space charge impedance in the entire impedance budget.
In such conditions, SCI determines parameters of intra-
bunch coherent oscillations including their frequency,
shape, and threshold of possible instability. A wake field
can be treated as a small perturbation which determines
parameters of collective modes including relative bunch
amplitudes and the instability growth rate.

It is shown that SCI is crucially affects threshold of
Landau damping determining both coherent tune and
incoherent tune spread of the bunch. As a result, Landau
damping suppresses almost all intra-bunch modes if the
space charge tune shift does not exceed about synchrotron
tune. However, several modes can be unstable at higher
tune shift. Furthermore, there is a rigid mode which is not
sensitive to space charge and synchrotron oscillations at
any distribution, and therefore not vulnerable to the
Landau damping at all.
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