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Abstract 

An effective analytical and semi-analytical method for 
internal electrical field calculations was proposed for 
ellipsoidal shaped beam as well as for a beam of arbitrary 
longitudinal shape with an elliptical transverse cross 
section. This method combines acceptable accuracy with 
a high speed of computation. The existing version of the 
DYNAMION code uses the particle-particle method to 
calculate the electrical field, which needs a significant 
time for computation. A Semi-Analytical Solver (SAS) 
for the ellipsoidal bunch was introduced into 
DYNAMION code. It allows much faster beam dynamics 
simulations than the old. The DYNAMION parameter 
"macroparticle size" was investigated in combination with 
the new space charge algorithm. The beam dynamics 
simulations were performed through the 1st Alvarez tank 
of the GSI linac UNILAC using the standard and the new 
methods. The RMS emittance growth as a benchmark 
parameter shows sufficient agreement between both 
solvers. 

INTRODUCTION 
Fast and precise space charge solvers are especially 

important in the beam dynamics simulations for high 
current linear and circular accelerators, where space 
charge effects may dominate and lead to the emittance 
growth and beam losses. Space charge effects can be 
calculated using different analytical and numerical 
methods. Recently various modifications of the PIC 
solver are mainly used for the simulations. The advanced 
multiparticle code DYNAMION [1], dedicated to beam 
dynamics simulations in linacs, was created in 1985 in the 
Institute of Theoretical and Experimental Physics (ITEP, 
Moscow) and was developed in collaboration of ITEP and 
GSI Helmholtzzentrum fuer Schwerionenforschung 
(Darmstadt) 

 
Figure 1: GSI – UNILAC. 

Since 1991 the code DYNAMION is used for study, 
optimization and upgrade of the heavy ion high current 
GSI linac UNILAC (Fig. 1), serving as a high current 
injector for FAIR - International Facility for Antiproton 
and Ion Research at Darmstadt together with the 
synchrotron SIS 18 (Fig. 2). The UNILAC comprises 
high current injector (HSI; 2.2 keV/u - 1.4 MeV/u), 

stripper section and poststripper accelerator (5 Alvarez 
type tanks; up to 11.4 MeV/u) [2,3]. 

For electrical field calculation the code DYNAMION 
uses recently two methods: the particle-particle 
interaction and the PIC solver. An analytical and Semi-
Analytical space charge Solver (SAS) was originally 
created for beam dynamics simulations in the GSI 
synchrotron SIS18 and in FAIR rings SIS100, SIS300 [4-
6]. This algorithm being implemented into the 
DYNAMION code allows also for fast and reliable beam 
dynamics simulations for linacs. 

 
Figure 2: Scheme of GSI Helmholtzzentrum für 
Schwerionenforschung (Darmstadt, Germany) with 
existing and future facilities. 

SEMI-ANALYTICAL SOLVER (SAS) FOR 
THE INTERNAL ELECTRIC FIELD 

CALCULATIONS 

Kellogg’s Formulae 
A 3D ellipsoidal frozen bunch is considered; the charge 

density is given by 
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where Q - total charge of the bunch, a,b,c – horizontal, 
vertical and longitudinal axis of the ellipsoid, n(t) – 
analytical function, representing particle distribution, t – 
isodensity parameter 

t=x2/a2+y2/b2+z2/c2, 0 ≤ t ≤1. 
The general formulae for the electrical field of such a 

bunch were derived by Kellogg [7]: 
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In common case, the integrals (1) are calculated 

numerically for each particle. During beam dynamics 
simulations this process should be repeated many times 
on each integration step of the particle motion equation, 
resulting in time consumption simulations. 

Interpolation of the Particle Distribution 
In the proposed method a particle distribution n(t), 

given by an analytical formula, is interpolated as a 
polynom: 
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using Chebyshev nodes 
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k=0,1,..., N. 

For the polynom of certain order N these nodes provide 
the minimum absolute error of interpolation. The 
optimum order of the interpolating polynom was 
investigated and found as N ≈20 [4]. 

Analytical Solution for an Axisymmetric Bunch 
For an axisymmetric ellipsoidal bunch (a=b, a<c) with 

a polynomial representation of the particle distribution the 
following transformation of standard Kellogg's formulae 
was proposed: 
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Then integrals Ii,j can be calculated analytically by 

using the hypergeometrical function: 
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. 
Indexes i,j here depend only on the order of the 

interpolating polynom, but not on the number of particles. 
Thus the integrals Ii,j can be calculated once for the whole 
bunch. It significantly reduces the computation time. The 
more particles are in the bunch, the higher is the 

advantage of the analytical method compare to the 
"standard" solvers [4]. 

Numerical Solution for an Arbitrary Ellipsoidal 
Bunch 

Using the polynomial representation of the particle 
distribution, the formulae (1) can be transformed to the 
following series: 
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The integrals Ii,j,k are calculated numerically by Gauss 
quadrature with high accuracy of 10-5. It limits the error in 
field calculations to less than 0.1%. As before, the 
integrals Ii,j,k can be computed once per integration step 
for the whole bunch. 

Previous Results and Implementations 
A comparison of the described solvers with analytical 

solutions known in some particular cases, shows high 
accuracy of the proposed methods (error is always less 
than 0.1%) [4,5]. 

Benchmarking of the analytical method with different 
linac codes (DYNAMION, IMPACT, LORASR, PARMILA, 
PARTRAN, PATH, TOUTATIS) was performed for an 
axisymmetric ellipsoidal bunch (105 particles, static case) 
in frame of the High Intensity Pulsed Proton Injector 
project (HIPPI) [8]. This comparison showed good 
coincidence of results and demonstrated high speed of 
computation by the proposed analytical method (up to 15 
times less CPU time). 

The development of the described algorithms allows 
calculations of space charge forces for a beam of arbitrary 
longitudinal shape with elliptical transverse cross section 
as well [5]. 

All these methods were introduced into the 
MICROMAP library [9] and were used for beam 
dynamics simulations and beam loss estimations for the 
GSI synchrotron SIS18 and for the FAIR project. 

SAS IMPLEMENTATION INTO 
DYNAMION CODE 

Application of the Method on One Integration 
Step (Static Case) 

The integration scheme in the multiparticle code 
DYNAMION has usually 100-200 steps per characteristic 
length βλ, where β is the relative velocity of the particle, λ 
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- the wave length of the operating frequency. Space 
charge effects are calculated at each step of integration 
using particle-particle method, which needs significant 
computational time. 

In previous simulations by SAS the particle distribution 
n(t) (given analytically) was polynomial interpolated. The 
code DYNAMION operates with a set of macroparticles 
represented by their coordinates and velocities, but not 
with the analytical function of the particle distribution. 
For the implementation of the new solver the continuous 
space charge density n(t) was the reconstructed from the 
discrete particles coordinates (x,y,z). To solve this 
problem we propose the following procedure on each step 
of integration. 

All Np particles of the bunch are assumed inside the 
ellipsoid with the axis a, b, c, i.e. 

t=x2/a2+y2/b2+z2/c2, 0 ≤ t ≤ 1. 

The average distance between particles in terms of 
parameter t can be defined as d=1/Np. 

The value of function n(t) for a certain argument t0 is 
defined as a number of particles with the parameter 
t=x2/a2+y2/b2+z2/c2 inside the interval [t0-kd, t0+kd]. Here 
k is a parameter which characterizes the vicinity of point 
t0. Obviously, for different k the value of the function n(t) 
(and consequently the value of electrical field) at this 
point will be different. 

In order to define the value of parameter k, the field 
calculation for the static case by SAS for different k was 
analyzed and compared with the p-p field calculations. 
The field calculation in DYNAMION code depends on the 
macroparticle size rmp, dedicated to avoid the artificial 
particle collisions. Usually this parameter changes inside 
the DYNAMION code automatically in accordance with 
the beam size (but also can be fixed). Thus the 
comparison of the field calculations was done in 2 steps. 

Step 1 
The value of function n(t) in the interpolation node t is 

defined inside the interval [t-kd, t+kd]. The electrical 
field Ex

k(x,y,z) was calculated for each of 105 test random 
particles (x,y,z) for the different value of the parameter k 
(2,3,4,5 and 6). The average and the maximum values of 
the relative error 
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for all particles of the bunch in dependence on parameter 
k are presented in Fig. 3. The average error Maver is 2 - 3% 
for all values of parameter k and does not indicate the 
optimum value of k. The maximum relative error Mmax 
obviously appears for particles with coordinates close to 
zero while the field in the bunch center is also close to 
zero. Nevertheless, the value of Mmax changes 
systematically for different k. Obviously the smallest 
Mmax is seen for k = 5. 

 

Figure 3: Average (dashed line, left scale) and maximum 
(solid line, right scale) values of the error (M) as a 
function of the parameter k. 

 Step 2 
The electrical field is calculated for all 105 test particles 

by the DYNAMION code with a fixed macroparticle size 
rmp of 1 mm, 0.5 mm, 0.1 mm, 0.05 mm, 0.001 mm. Then 
SAS with a fixed k = 5 is applied to the same set of 
particles. We compare the results for SAS with 
DYNAMION computation for different rmp. An average 
relative error of field calculation is about 1% for rmp = 
0.1mm and about 3% for all others values of rmp. 

From the other side the value rmp ≈ 0.1mm is 
automatically calculated for this bunch in the 
DYNAMION code. This comparison additionally verified 
coincidence of both methods and right definition of rmp in 
the DYNAMION code. 

CPU Time Comparison for SAS and P-P 
Method (Static Case) 

The comparison of computational speed in the static 
case for the proposed algorithm and for particle-particle 
field calculation is presented in Fig. 4. Obviously SAS 
has a significant advantage for particle number above 
5·103. 

Beam Dynamics Simulations with SAS in the 
GSI Poststripper DTL 

The particle motion through the 1st Alvarez tank was 
simulated by the DYNAMION code using p-p and SAS 
methods. The computation scheme and integration of the 
particle motion equation was in both cases the same. 
Therefore difference in CPU time (with the same number 
of particle) occurs due to the different space charge 
solvers only.  
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Figure 4: CPU time for p-p (dashed line) and SAS (solid 
line) calculations with different number of particles. 

The distributions with the particle number of 103, 104 
and 105 (gaussian, truncated at 2σ) were generated. These 
distributions with σx,y = 4mm, σz = 8mm represent a U 28+ 
bunched beam at an energy of 1.4 MeV/u. The beam 
current was varied from 0 up to 50 mA, while the design 
value is about 20 mA. Tab. 1 shows the speed of 
simulations for different numbers of particle using both 
methods. Obviously for high particle number SAS allows 
calculation of beam dynamics much faster than the p-p 
method. It allows for simulations with 105-106 and even 
more particles with a reasonable CPU time, while 
standard DYNAMION simulations use 103-104 particles. 

 
Table 1: CPU Time of Simulation by DYNAMION Code 
for Different Number of Particles Using P-P and SAS 
Method 

 
The RMS emittance growth was chosen as a 

characteristic parameter of the calculations accuracy. 
More detailed investigations are recently under 
investigation. Fig. 5 shows the RMS transverse 
emittances behind the 1st Alvarez tank as a function of 
beam current for both space charge solvers. These tests 
were done for 2·103 particles with the p-p space charge 
solver and for 104 particles with the SAS. These two 
models are comparable in accuracy and require similar 
CPU time. 

 
Figure 5: RMS emittance behind the 1st Alvarez tank as 
function of the beam current. 

Just small difference might be explained by the 
simplification of models and by the choice of the 
parameters in the solvers: 

- Slightly different macro-characteristics of the 
generated input distributions with 2·103 and 104 particles. 

- The parameter k = 5 is chosen on the base of the 
previous investigation in the static case. 

- For this test the macroparticle size is fixed: 
rmp = 0.1mm. Previous investigations showed a weak 
dependence of the results on the rmp parameter [1]. 

- For this test an integration scheme for the computing 
of particle motion equation has 100 steps per βλ. 

Last issue was studied additionally. Fig. 6 shows the 
dependence of the RMS emittance on the number of 
integration steps in the DYNAMION code with p-p solver 
and with the SAS.  

 
Figure 6: An RMS emittance behind the 1st Alvarez tank 
as a function of number of integration steps. 

As already shown [1], for the reliability of simulation 
using p-p model the number of steps plays a more 
important role than the number of particles. The RMS 
emittance plato, also calculated with the semi-analytical 
solver, confirms this fact. 

particles 103 104 105 

p-p 10 min 48 hours - 

SAS 1 hour 2 hours 10 hours 

Proceedings of HB2010, Morschach, Switzerland TUO2A02

Computational Challenges in High-Intensity Linacs, Rings incl. FFAGs, Cyclotrons 293



CONCLUSION 
A fast and precise Semi-Analytical space charge Solver 

(SAS) for the ellipsoidal bunch is added to DYNAMION 
code. A continuous space charge density function is 
reconstructed from the discrete particles coordinates by a 
polynomial interpolation (using Chebyshev nodes for 
higher accuracy). 

For particle number above 5·103 SAS allows beam 
dynamics simulations much faster than the p-p method. 
New solver allows for the calculations with particle 
number up to 106. 

The analysis of the results shows a good coincidence 
between SAS and the existing DYNAMION solver, 
which is already proved by numerous benchmarking tests 
and by a comparison with measured data. 

An advanced "2-step" scheme for beam dynamics 
simulation with DYNAMION code is already proposed. 
Initial investigations can be done by using the fast and 
reliable SAS method. Finally the results should be proved 
by high precision calculations with more time consuming 
space charge solvers. 

OUTLOOK 
- A set of various tests is recently under investigation in 

order to optimize internal parameters of the algorithms. 
- Different bunch shapes will be considered. 
- A benchmarking of the beam dynamics codes 

DYNAMION (new solver) and LORASR is foreseen. 
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