
ACCELERATED PARTICLE TRACKING USING GPULIB

V. Ranjbar, I. Pogorelov, P. Messmer, K. Amyx,
Tech-X Corporation, Boulder, Colorado, USA

Abstract

A 4D version of BNL’s spin tracking code SPINK [1]
with limited elements has been successfully ported to a
C++/GPU platform using GPULib [2]. This prototype used
only quadrupoles, simple snakes, dipoles and drifts. We
present the approach used to track spin and orbit degrees
of freedom of polarized proton beams simultaneously. We
also present recent results of prototyping a general-purpose
particle tracking on GPUs, discussing our CUDA im-
plementation of maps for single-particle dynamics in the
Argonne National Lab’s accelerator code ELEGANT [3]
where a 40x speedup was achieved for single-particle-
dynamics elements.

GENERAL PURPOSE COMPUTING ON
GPUS

In recent years, general purpose computing on graphics
processing units (GPUs) has attracted significant interest
from the scientific computing community because these
devices offer a large amount of computing power at very
low cost. Unlike general purpose processors, which are
designed to address a variety of tasks ranging from con-
trol flow and bit manipulation operations to floating-point
operations, GPUs are optimized to perform floating-point
operations on large data sets. Instead of allocating a large
amount of the on-chip real estate for large cache memory
and control flow logic, GPUs dedicate a lot of resources
to floating-point units. A GPU like the one found in the
NVIDIA Tesla C2050 serias consists of 15 vector proces-
sors with a vector length of 32 elements. Using predicated
execution enables each vector element to execute its own
flow through the program, providing the impression of 448
independent execution units.

The introduction of the Compute Unified Device Archi-
tecture (CUDA) by NVIDIA has made it possible for com-
putational scientistst without a deep knowledge of graphics
oriented programming interfaces like OpenGL to take ad-
vantage of the high processing power offered by GPUs.

CUDA enables users to develop algorithms in C++ with
a small set of language extensions. The developers write
so-called kernels, code that executes on the GPU defin-
ing the behavior of a single thread of execution. Typically,
a kernel is executed by thousands of threads concurrently
and the GPU’s thread manager maps them to the physical
thread processors. The kernel is invoked on the host side,
at which time it is determined how many threads will be
executed. Memory management, data transfer and kernel
invocations are all controlled by the host CPU. A special
compiler, nvcc, translates kernels and host programs into

code that executes on the CPU and on the GPU. This archi-
tecture simplifies significantly the software development
process for CUDA-enabled GPUs, but it still requires a de-
tailed knowledge of the GPU’s architecture in order to ob-
tain good performance. For example, while the threads can
be treated independently of each other, they are in fact exe-
cuted on a Single-Instruction-Multiple-Data (SIMD) type
architecture. E.g. on a C2050 card, 32 threads are ex-
ecuted using the same instruction stream, which means
that diverging threads can lead to a large amount of stalled
threads thus degrading performance. Also, one of the ben-
efits of GPUs is their large memory bandwidth, but in or-
der to take advantage of it, memory access of different
threads has to be carefully aligned. Finally, many inher-
ently sequential algorithms, such as cumulative sums of a
vector, are straightforward to implement on a serial proces-
sor. However, optimization on a massively parallel system
like GPUs requires carefully crafted routines. In order to
free developers of the burden of low-level GPU code de-
velopment, Tech-X developed GPULib, a library of GPU
vector operations (http://GPULib.txcorp.com) [2]. While
mainly designed to be used from within high-level lan-
guages, GPULib can also be used from C or Fortran.

GOALS OF THE CURRENT WORK

Our goal is to provide a set of fast orbit tracking ker-
nels for ELEGANT and spin-orbit tracking classes for the
Unified Accelerator Library (UAL) [4]. Using the UAL
paradigm will make these classes usable by a wide vari-
ety of codes. The core spin transport function in SPINK,
Sprot(), will be extracted translated to Templated C++ and
turned into a self-contained class. These classes will wrap
and self-contain core GPU kernels which will drive the nu-
merically expensive particle pushes. These GPU kernels
will be made available in future GPULib packages.

ELEGANT is an open-source, multi-platform code used
for design, simulation, and optimization of FEL driver
linacs, ERLs, and storage rings [3, 5]. The parallel version,
PELEGANT [6, 7], uses MPI for parallelization and shares
all source code with the serial version. Several new ”di-
rect” methods of simultaneously optimizing the dynamic
and momentum aperture of storage ring lattices have re-
cently been developed at Argonne [8]. These powerful
new methods typically require various forms of tracking
the distribution for over a thousand turns, and so can ben-
efit significantly from faster tracking capabilities. Because
the ability to create fully scripted simulations is essential
in this approach, ELEGANT is used for these optimization
computations.

TUO2A01 Proceedings of HB2010, Morschach, Switzerland

286 Computational Challenges in High-Intensity Linacs, Rings incl. FFAGs, Cyclotrons



Orbit Tracking

Machines are defined in terms of a ’lattice’ of elements
which act to ’steer’ and accelerate the beam. For example,
in SPINK Particles are tracked through the lattice in terms
of their 6D phase space coordinates.

�r = x, px, y, py, z, pz (1)

In many codes this is accomplished by applying a trans-
port map to propagate the particles from one element to the
next:

�rn+1 = M n(�rn) (2)

where M is the map and n is the element number. In the
simplest cases these maps are just 6x6 matrices however for
higher order tracking they can take the form of Taylor maps
or include ’space-charge’ effects which require solving for
the self fields.

ELEGANT is fundamentally a lumped-element particle
accelerator tracking code utilizing 6D phase space, and is
written entirely in C. A variety of numerical techniques
are used for particle propagation, including transport ma-
trices (up to third order), symplectic integration, and adap-
tive numerical integration. Collective effects are also avail-
able, including CSR, wakefields, and resonant impedances.
Presently, we are working on prototyping key ELEGANT
particle tracking algorithms on NVIDIA GPUs and show-
ing that such accelerated implementations can be incorpo-
rated into ELEGANT. To achieve this goal, we focus on
one element described by a transfer map (a quadrupole),
and one collective-effect element (a drift with 1D longi-
tudinal space charge). Our longer-term goal is to expand
the kernel library to include optimized implementation on
GPUs of most of the ELEGANT elements, starting with the
most time consuming ELEGANT kernels.

Spin Tracking

Existing codes usually track both orbital and spin coor-
dinates of a beam of spin-1/2 particles through the lattice
of a circular accelerator. The spin vector �S in the particle
rest frame precesses in the machines electric and magnetic
fields according to the Thomas-BMT equation [9].

d�S

dt
= �S × �Ω, (3)

where

�Ω =
e

mγ

[
(1 +Gγ) �B⊥ + (1 +G) �B‖+ (4)

1

c
(Gγ +

γ

1 + γ
) �E × �β

]
(5)

For s based tracking purposes �Ω is usually expressed
in terms of an expansion in magnetic field in terms of the

Frenet-Serret coordinate system and Magnetic fields to ob-
tain,

�Ω =
h

Bρ

(
(1 +Gγ) �B −G(γ − 1)(�r′̇�B)r′

)
(6)

where

h = h(x, x′, y′) =
√
x′2 + y′2 + (1 + x/ρ)2 (7)

and

r′ =
�v

v
(8)

where v and �v is the velocity magnitude and vector respec-
tively. Following [10] , over an infinitesimal step size δs
solutions to the T-BMT equation result in a spin transport
map,

⎛
⎝

1− (B2 + C2)c ABc+ Cs ACc−Bs
ABc− Cs 1− (A2 + C2)c BCc+As
ACc+Bs BCc−As 1− (A2 +B2)c

⎞
⎠

(9)
with,

c = 1− cos(ωδs) (10)

s = sin(ωδs) (11)

A =
Ωx

ω
(12)

B =
Ωy − 1/ρ

ω
(13)

C =
Ωz

ω
(14)

ω =
√
Ω2

x + (Ωy − 1/ρ)2 +Ω2
z (15)

The terms in the spin transport matrix Eq. 9 contain up to
fourth order terms in �r. Thus unlike the orbit push where
the same transport map is applied to all the particles, the
spin transport maps are unique to each phase space point
and require calculation on the fly.

INITIAL RESULTS

Spin-Orbit Tracking Efforts Using GPULib

A 4D version of BNL’s spin tracking code SPINK [1]
with limited elements has been successfully ported to a
C++/GPU platform using GPULib [2]. This prototype used
only quadrupoles, simple snakes, dipoles and drifts.

Our approach was as follows:

1. The 4D phase space particles are loaded from the
CPU into an N sized particle array on the GPU: X[N],
PX[N], Y[N], PY[N]

2. The particles are then pushed through a 4x4 orbit
transport matrix defined by the lattice. This is accom-
plished using several calls to GPULibs’ gpuAddFAT
function.

Proceedings of HB2010, Morschach, Switzerland TUO2A01

Computational Challenges in High-Intensity Linacs, Rings incl. FFAGs, Cyclotrons 287



3. The input and output phase space variable are aver-
age to get Xavg[N] on the GPU using both GPULibs’
gpuAddF and gpuAddFAT functions.

4. These averaged phase space points together with
knowledge of the magnetic fields in the elements are
then used to construct the elements of the 3x3 spin
transport matrix. This involves calculation of up to
4th order terms in r based on the Thomas-BMT equa-
tion. The calculations were performed on the GPU
using GPULibs’ gpuMultF, gpuMultFAT, gpuAddF,
gpuSqrtF, gpuDivF, gpuSinF and gpuCosFAT func-
tions.

5. Finally the spin is pushed through this spin transport
map now using GPULib’s gpuMultF and gpuAddF
functions

Prototype Kernels for Single-Particle-Dynamics
in ELEGANT

As a first step toward enabling particle tracking with
ELEGANT on GPUs, we implemented in CUDA the 2nd
order map for the quadrupole beamline element (QUAD
in ELEGANT notation). This implementation serves as
a starting point for the transition of a set of ELEGANT’s
single-particle-dynamics algorithms to GPUs. So far, we
implemented algorithms in both single and double preci-
sion, with an emphasis on optimizing the kernels for the
NVIDIA “Fermi” GPU architecture. In our implementa-
tion, we stored particles in linear memory, and investigated
schemes in which one particle is computed per thread. We
utilize the high-bandwidth and low-latency constant mem-
ory cache to store and access the map parameters used to
update the particle information. This minimizes memory
traffic and has yielded superior performance to schemes we
investigated that utilized L1 caching or shared memory.

For testing purposes, we generated a realistic 6D phase
space distribution function that was propagated through a
lattice consisting of a small number (∼ 20) of quadrupoles
and drifts (without space charge). In a simulation
with 100k double-precision particles, we observed a 20x
speedup on a C2050 Fermi GPU compared to a single core
Intel Xeon X5650 @ 2.67GHz CPU, with a comparable
speedup seen when traversing a single quadrupole. (The
20x speedup becomes approximately 40x when the com-
putation is done in single precision.) In addition to devel-
oping kernels for other beamline elements, we plan to ex-
plore additional efficient ways of accessing the map param-
eters. The latter becomes more important in simulations
with higher order maps, as the number of Taylor series co-
efficients that describe the map goes up.

ONGOING DEVELOPMENT

Older codes like SPINK used an averaged phase space
value based on the values at the entry and exit of an element
for �r in the spin matrix calculation. However it has been

determined that for the high precision necessary for spin
tracking in the EDM (Electric Dipole Moment) and RHIC-
Spin experiments, that this was not sufficient. More recent
approaches use a thin element treatment of each magnet (as
in UAL-TEAPOT), thus keeping the entry and exit phase
space values is no longer necessary.

We are currently developing CUDA code embedded in
UAL Templated C++ classes to perform the particle push
in UAL-TEAPOT. This approach while easily integratable
into the UAL framework has the draw back that particle in-
formation needs to be copied back and forth to the GPU
on each function call. A better approach will be to main-
tain particle information on the GPU only uploading the
initial distribution and downloading the final distribution
after the tracking is complete. An even more efficient ap-
proach would be for both the 6x6 orbital transport matrix
and magnetic fields for each element in a typical lattice (i.e.
for RHIC 256 - 1000 active elements depending on slicing
needs) to be preloaded on the GPU, then a single GPU ker-
nel call can track many particles over many turns. We be-
lieve the final result will be capable of performing all three
approaches depending on diagnostic details required by the
modeler.

We are also working on developing prototype kernels for
collective effects in ELEGANT, using as our test case the
LSCDRIFT element (drift with longitudinal space charge).
CUFFT library will be used to implement a DFT of the
binned longitudinal space charge which is then multiplied
by a known impedance function, the inverse DFT applied
thereupon to transform the result back to the original space.
A nontrivial aspect of this work is efficient implementa-
tion of charge binning algorithms, which are challenging
to implement on a GPU due to the possibility of mem-
ory contention between individual threads attempting to de-
posit charge to the same bins. We will investigate two ap-
proaches: atomic memory updates and data-parallel primi-
tives. The Fermi architecture allows for fast floating-point
atomic updates to memory locations that avoid thread con-
tention issues. This can be utilized to perform a one-
dimensional charge binning. The second approach is to
apply a generic sorting algorithm (such as the radix sort
implemented in the CUDPP library) to sort particles based
on bin index; then perform a modified segmented prefix
sum operation (also implemented in the CUDPP library)
to calculate the average longitudinal position of particles
based on bin index, as well as count the number of particles
based on bin index; and finally calculate the charge contri-
bution to first the lower charge bins, then the upper charge
bins, based on the average longitudinal position and num-
ber of particles between bins. Depositing charge first to the
“lower bins”, synchronizing (in CUDA this is equivalent to
launching a second kernel), and then depositing charge to
the “upper bins” will allow us to avoid memory conflicts
and perform the charge binning in a data-parallel manner.

TUO2A01 Proceedings of HB2010, Morschach, Switzerland

288 Computational Challenges in High-Intensity Linacs, Rings incl. FFAGs, Cyclotrons



ACKNOWLEDGEMENTS

This work is funded by the DOE/BES Grant No. DE-
SC0004585, DOE/NP Grant No. DE-SC0004432 and
Tech-X Corp. We would also like to thank NERSC for use
of their computing resources.

REFERENCES

[1] A. U. Luccio, Spin tracking in RHIC code SPINK,”in Pro-
ceedings of the Adriatico Research Conference on Trends in
Collider Spin Physics, (Singapore), p. 235, World Scientific,
1995.

[2] P. Messmer, P. J. Mullowney, and B. E. Granger,
”GPULib: GPU computing in high-level languages,”
Comput. Sci. Eng., vol. 10, no. 5, pp. 70-73, 2008.
(http://GPULib.txcorp.com)

[3] M. Borland, ”elegant: A Flexible SDDS-compliant Code for
Accelerator Simulation”, APS LS-287, September 2000.

[4] N. Malitsky and R. Talman, “The Frame-
work of Unified Accelerator Libraries”
http://www.slac.stanford.edu/econf/C980914

/papers/C-We13.pdf.

[5] M. Borland, V. Sajaev, H. Shang, R. Soliday, Y. Wang, A.
Xiao, W. Guo, “Recent Progress and Plans for the Code
ELEGANT,” in Proceedings of 2009 International Compu-
tational Accelerator Physics conference, San Francisco, CA,
WE3IOpk02 (2009).

[6] Y. Wang, M. Borland. “Implementation and Performance
of Parallelized Elegant”, in Proceedings of PAC07, TH-
PAN095 (2007).

[7] H. Shang, M. Borland, R. Soliday, Y. Wang, “Parallel
SDDS: A Scientific High-Performance I/O Interface,” in
Proceedings of 2009 International Computational Accel-
erator Physics conference, San Francisco, CA, THPsc050
(2009).

[8] M. Borland, V. Sajaev, L. Emery, and A. Xiao, “Direct
Methods of Optimization of Storage Ring Dynamic and Mo-
mentum Aperture”, in Proceedings of PAC09, TH6PFP062
(2009).

[9] V Bargmann and Louis Michel and V. L. Tegegdi, “Preces-
sion of the polarization of particles moving in a homogenous
electromagnetic field”, PREVL. 2 pp.435–436 (1959).

[10] A. Luccio, “Spin Rotation Matrices for Spin Tracking”,
AGS/RHIC/SN No. 013 (1996).

Proceedings of HB2010, Morschach, Switzerland TUO2A01

Computational Challenges in High-Intensity Linacs, Rings incl. FFAGs, Cyclotrons 289


