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Abstract

The peak detected Schottky spectrum is used for beam
observation in the CERN SPS and now also in the LHC.
This tool was always believed, however without proof,
to give a good picture of the particle distribution in syn-
chrotron frequencies similar to the longitudinal Schottky
spectrum of unbunched beam for revolution frequencies.
The analysis shows that for an optimised experimental set-
up the quadrupole line from the spectrum of the peak de-
tected signal is very close to the synchrotron frequency dis-
tribution inside the bunch - much closer than that given by
the traditional longitudinal bunched-beam Schottky spec-
trum. The analysis of limitations introduced by a realistic
experimental set-up is based on its realisation in the SPS.

INTRODUCTION

The so called “peak detected Schottky” (PD Schottky)
signal is a beam diagnostics tool developed and used exten-
sively in the SPS [1, 2] since the late seventies, especially
during pp̄ operation. This technique has already been used
in the LHC.

The theory of Schottky signals for unbunched and
bunched beams both in the longitudinal and transverse
plane is well developed (e.g. [3]-[5]). In the case of an un-
bunched beam the longitudinal Schottky spectra gives the
particle distribution in revolution frequencies and therefore
in particle momentum. For the bunched beam, informa-
tion about the momentum spread (dispersion) can also be
extracted in most cases [6].

The PD Schottky is a special case of the bunched beam
longitudinal Schottky signal, different from the usual tech-
nique since it uses only one selected piece of information
from the beam current - its (average) peak amplitude. This
method is in fact closer to the unbunched beam Schot-
tky spectra in that it also provides almost direct informa-
tion about the particle distribution in oscillation frequency,
which for an unbunched beam is the revolution frequency
and for a bunched - the synchrotron frequency [7]. The de-
viation of the PD Schottky spectrum from the synchrotron
frequency distribution is mainly defined by the experimen-
tal set-up.

PEAK DETECTED SIGNAL

The peak detected signal is used as a beam diagnostics
tool to control beam lifetime and stability and can also be
used as input for Schottky diagnostics. In the SPS and LHC
a simple circuit, Fig. 1, consisting of fast switching diode
and capacitor detects the peak of the bunch current signal

from the wide-band pick-up. The spectrum is obtained us-
ing the dynamic spectrum analyser.

Figure 1: The simplified scheme of the bunch peak detec-
tion used for longitudinal Schottky signal in the SPS.

The parameters relevant to the Schottky measurements
in the SPS and LHC and used in different examples below
are presented in Table 1.

Table 1: The PD Schottky Parameters in the SPS and LHC

Parameter SPS LHC
revol. period T0 µs 23.0 88.9
RF harmonic h 4620 35640
resistance R1 Ω 50 50
resistance R2 MΩ 1.0 1.0
capacitance C pF 240 920
PD decay time 1/µ µs 240 920
PD growth time 1/α ns 12 12
acquisition time Ta s 1.6 3.2

The fast diode is open during the bunch passage with
current Ib, when Vb = IbR1 ≥ V . The voltage V measured
at resistance R2 during this time interval (−T1, T2) can be
found from the following equation (valid for R2 � R1)

dV
dt
= α(Vb − V), (1)

where αC = 1/R1 + 1/R2. The solution of eq. (1), valid for
−T1 < t < T2, is

V(t) = α
∫ t

−T1

Vb(t′) e−α(t−t′) dt′ + V(−T1)e−α(t+T1). (2)

with additional conditions

V(−T1) = Vb(−T1), (3)

V(T2) = Vb(T2). (4)
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Figure 2: Illustration of the PD signal in time domain used
for Schottky spectrum measurements.

The diode is off for the rest of the revolution period and

dV
dt
= −μV, V(t) = V(T2) e−μ(t−T2), (5)

where μ = 1/(R2C). The voltage is sampled during this
period (typically 2048 points), see Fig. 2.

After a transient period, in the quasi-stationary situation
variations of T1 and T2 from turn to turn are small and de-
fined only by statistical fluctuations (Schottky noise). Then
in the first approximation (and for T1 � T0)

V(−T1) � V(T2) e−μT0 .

Taking into account solution (2) together with (3-4) allows
the stationary values of T1 and T2 to be found as functions
of beam (bunch length for a given particle distribution) and
experimental set-up (α and µ) parameters. They are shown
in Fig. 3 for a Gaussian line density with rms bunch length
σ. One can see that in this model for the SPS set-up T1 �
T2 � σ.

The signal detected at the moment t, after the k-th bunch
passage, is Vke−μ(t−tk), where tk = kT0 and

Vk = ΔVk + Vk−1e−δ =
k∑

q=0

ΔVk−q e−qδ. (6)
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Figure 3: T1/σ (dashed line) and T2/σ (solid line) for
μT0 = 0.07 (two upper curves, SPS values) and μT0 = 0.01
(lower curves) found for a Gaussian line density.

Here δ = α(T2 + T1) + μT0 and the increase in voltage at
each revolution turn, as follows from (2),

ΔVk = R1α

∫ tk+T2

tk−T1

Ib(tk − t′) e−α(tk+T2−t′)dt′. (7)

is proportional to the average bunch peak amplitude.
In the SPS set-up αT2 = 0.083, μT0 = 0.077 and δ �

0.25 for T2 = T1 = 1 ns.

PEAK DETECTED SCHOTTKY
SPECTRUM

A particle with phase ψn = Ωnt + ψn0 will be detected at
the azimuthal position φ (RF phase) twice per synchrotron
period 2π/Ωn at time t1 and t2, when

ψn = Ωntφ + 2πm

ψn = π −Ωntφ + 2πm,

where m = ±0, 1, ...,∞, and

tφ = tφ(En, φ) =
∫ φ

0

dφ′√
2[En −W(φ′)]

.

We consider below a single RF system with potential well
W(φ) = Ω2

s0(1 − cosφ), where Ωs0 = 2π fs0 = 2π/Ts0

is a linear synchrotron frequency and for a particle with
phase oscillation amplitude φa the synchrotron energy E =
W(φa). The particle contribution to a bunch current at φ is

In(t, φ) =
e
2

∑
m

[δ(t − t1) + δ(t − t2)] =

=
eΩn

4π

∑
m

[eimΩntφ + eim(π−Ωntφ)] e−im(Ωnt+ψn0). (8)

Collecting contributions at φ from all particles the increase
in voltage (7) can be written in the form

ΔVk =
e

2π
B
∑

n

∞∑
m=−∞

Ωn Am(En) e−im(Ωntk+ψn0), (9)

where B = 2R1αTe−αT and Am = Am(En) is

Am =
1

2Φ

∫ Φmax

−Φmax

e
αφ

hω0 [eimΩntφ + eim(π−Ωntφ)]dφ.

HereΦ = hω0T2 and the limit of integrationΦmax is a func-
tion of En

Φmax = Φ for En ≥ W(Φ), (10)

Φmax = φa(En) for En ≤ W(Φ), (11)

since particles with synchrotron energy En > W(Φ) con-
tribute to the whole range of measurement 0 ≤ φ ≤ Φwhile
for particles with En < W(Φ) the contribution is restricted
to the range 0 ≤ φ ≤ φa(En) with φa(En) determined by
equation En = W(φa). As it will be shown below the shape
of the Schottky signal is mainly affected by these functions.
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Examples of Am as a function of the synchrotron oscillation
amplitude φa for different multipoles m and values of Φ in
a single RF system are shown in Fig. 4. For a single RF
system and Φ � π functions Am can be calculated analyti-
cally:

A1 =
αφφa

3 ( φa

Φ
) for φa ≤ Φ

A1 =
αφΦ

3 ( Φφa
) for φa ≥ Φ

A2 =
1
3 ( φa

φ
) for φa ≤ Φ

A2 = 1 − 2
3 ( Φφa

)2 for φa ≥ Φ

where αφ = α/(hω0). Maximum value of A1, αφΦ/3,
is usually much less than 1, maximum of A2, and it is
achieved at synchrotron oscillation amplitude φa = Φ.
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Figure 4: Function |Am(φa)| for m = 1, 2, 3 and 4 (from
top to bottom) calculated for αφ = 0.07 and Φ = 2π/5,
Φ = π/5 and Φ = π/10.

Using expression (9) the summation over q in (6) can be
performed and finally for the PD signal we obtain

Vk =
eB
2π

∑
n

∑
m

Ωn Am(En) Qm(Ωn) e−im(Ωntk+ψn0). (12)

For large enough k, so that kδ � 1, the function Qm is

Qm(Ωn) =
k∑

q=0

eimΩnT0q−qδ � 1
1 − eimΩnT0−δ .

Averaging over initial phase ψn0 (similar to that for un-
bunched beam Schottky, see e.g. [4]) and replacing the sum
over all particles by the integral over the distribution func-
tion F(Ω) = dN/dΩ (normalised to unity) the power spec-
tral density of the PD signal can be written in the form [7]

P(ω) =
P0

Ω2
s0

∞∑
m=1

∫
Ω2F(Ω) |Am(Ω)|2|Qm(Ω)|2 S 2dΩ,

(13)
where P0 = e2N fs0B2. Function S depends on the acquisi-
tion time Ta with

S 2 = |S (ω − mΩ)|2 = 2Ta

Ts0

sin2 [(ω − mΩ)Ta/2]
[(ω − mΩ)Ta/2]2

.

Taking into account the structure of the PD signal, Fig. 2,
and the fact that measurements are done at some sampling
rate ts which is different from T0, function S becomes

|S |2 = e−2μt0
2t2

s

Ts0Ta

sin2 [(ω − mΩ)Ta/2]

sin2 [(ω − mΩ)ts/2]
, (14)

where t0 is a time of signal acquisition (sampling) after the
bunch passage and discrete frequencies are replaced by a
continuous spectrum. Since t0 < T0 we have e−2μt0 � 1.
The signal has some additional noise if sampling is not at a
multiple of the revolution period T0 [7].

For the SPS experimental set-up the distortion of the PD
Schottky spectra due to function |Qm(Ω)|2, which can be
also written in the form

|Qm(Ω)|2 = eδ/2
cosh δ − cos (mΩT0)

,

is very small. A few examples of this function for different
δ are given in Fig. 5.

The Schottky power spectrum is mainly affected by the
form-factor |Am(Ω)|2. It is obvious from Fig. 4 that only a
quadrupole line m = 2 can represent well the synchrotron
frequency distribution inside the bunch. All odd multi-
poles are also significantly suppressed in amplitude, indeed
(A1/A2)2 ∼ (αφΦ)2 and in the SPS set-up αφΦ ≤ 0.1. Ex-
amples of A1 and A2 as functions of the synchrotron oscil-
lation frequencyΩ are shown in Fig. 6 for differentΦ. The
smaller the integration time Φ the closer the shape of the
measured quadrupole band is to the synchrotron frequency
distribution.

Examples of the quadrupole line in the PD Schottky
spectrum for Gaussian distribution function with σφ =
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Figure 5: Function δ2|Q2(Ω)|2 for δ = 0.25 (top), δ = 0.1
(middle), δ = 0.01 (bottom) with T0Ωs0 = 0.03.

hω0σ = π/4 and Φ = π/8 (top) and Φ = π/4 (bottom)
are shown in Fig. 7. These spectra can be compared with
the corresponding distribution function in synchrotron fre-
quency as well as with Schottky spectra of the ”ideal” case
(A2 = 1 in (13), only taking the finite acquisition time Ta

into account). As Qm is a fairly flat function ofΩ for not too
small δ, the measured PD Schottky spectrum deviates from
F(ω/m), mainly due to A(Ω). The distortion is smaller for
smaller Φ and in the limit of tφ = 0, Am = (1+ (−1)m)/2, so
that only even multipoles (reducing as 1/m in amplitude)
are present in the spectrum. The quadrupole line gives the
best reproduction of particle distribution.

For comparison, the dipole sideband at revolution har-
monic ph in the traditional Schottky spectra (e.g. [4]), cal-
culated by replacing the function (QmAm)2 in P(ω) by the
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Figure 6: Top: functions |A2(Ω)|2 forΦ = π/10 (top curve),
Φ = π/5 (middle) and Φ = 2π/5 (bottom). Bottom:
|A1(Ω)|2 for the same Φ and αφ = 0.07.
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Figure 7: Quadrupole PD Schottky band P/P0 (blue) for
Φ = π/8 (top) and Φ = π/4 (bottom), σφ = π/4, measure-
ment time Ta = 320 Ts0. In all figures logarithmic scale
(dB), 2Ωs0/mF(ω/m) as dashed line, solid line (bottom fig-
ure) - ideal case with A2 = 1.

Bessel function J2
m(pφa), with p = 5 in the SPS and p = 12

in LHC [9], is shown in Fig. 8. One can see that this Schot-
tky line would give a very good measurement of a zero-
amplitude synchrotron frequency, but has a very perturbed
(modulated) presentation of a synchrotron frequency dis-
tribution, at least for p � h, which is usually the case due
to the wish to have Schottky measurements at frequencies
significantly higher than bunch spectrum.

The calculated spectrum finally can be compared with
the measured PD Schottky spectrum, Fig. 9. For low inten-
sity beam (top figure), the amplitude of the dipole and sex-
tupole lines is always much smaller than of a quadrupole
line as should be expected for a small integration distance
Φ and parameter αφ. This distance is further reduced if the
finite reaction time of the fast diode is taken into account.
The shape of the quadrupole line is close to calculated and
the octupole line even has the double hump as functions
A4 in Fig. 4. The example of measurements done for high
intensity bunches is shown in Fig. 9 (bottom). The first
measurements of Schottky spectrum in LHC at 450 GeV
with σφ = π/7 can be found in ([8]).

The PD Schottky spectrum has been used as a powerful
beam diagnostic in many different studies, such as mea-
surements of the quadrupole frequency shift with intensity
(for evaluation of the low-frequency inductive impedance
of the SPS), beam dynamics in a double RF system and
beam loss studies. From example in Fig. 10 one is able
to see how an external excitation (at 790 Hz) can depop-
ulate and even creates holes in certain areas of the bunch
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Figure 8: Dipole sidebands (a.u.) in the traditional Schot-
tky spectrum (cyan) for Ta = ∞, p = 5 (top, SPS 1 GHz
system) and p = 12 (bottom, LHC 4.8 GHz system). In all
figures logarithmic scale (dB), 2Ωs0/mF(ω/m) as dashed
line, σφ = π/4.

Figure 9: Measured PD Schottky spectrum in the SPS at
26 GeV/c. Top: low intensity bunch with σφ = π/4, fs0 =

240 Hz. Bottom: one of four bunches spaced by 525 ns
with average intensity of ∼ 8× 1010 during the coast at 270
GeV/c, fs0 = 192 Hz, σφ = π/12.

Figure 10: Measured PD Schottky spectrum in the SPS at
26 GeV/c for the nominal LHC batch (72 bunches) in the
ring, 17 min after the beginning of the store, at the head
(top) and the tail of the batch (bottom), fs0 = 257 Hz [2].

[2]. Removal of this source from the feedback electronics,
improved beam transmission. Lifetime of bunches at the
tail of the batch was less than at the head, the difference
in synchrotron frequency distribution is also visible from
Schottky spectrum.

SUMMARY
The quadrupole line of the PD Schottky spectrum rep-

resents the particle distribution in synchrotron frequency
modified by nonlinearity of the synchrotron frequency (fac-
tor Ω2) and experimental set-up (function A2). The devia-
tion introduced by the latter is mainly defined by the dis-
tance (phaseΦ) over which the bunch peak amplitude aver-
aging is performed. The connection between Φ and bunch
parameters obtained allows the existing Schottky measure-
ments to be understood and possible improvements to be
foreseen.
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