
Abstract

We have developed a theory to calculate both longitu-

dinal and transverse impedances of a resistive short (typi-

cally shorter than the chamber radius) insert with cylindri-

cal symmetry, sandwiched by perfectly conductive cham-

bers on both sides. It is found that unless the insert be-

comes extremely thin (typically a few nm for a metallic

insert) the entire image current runs on the thin insert, even

in the frequency range where the skin depth exceeds the in-

sert thickness, and therefore the impedance increases dras-

tically from the conventional resistive-wall impedance. In

other words, the wake fields do not leak out of the insert

unless it is extremely thin.

INTRODUCTION

In proton synchrotrons, the inner surface of a short ce-

ramic break is normally coated by a thin (typically about

ten nm) Titanium Nitride (TiN) to suppress the secondary

emission of electrons. The skin depth can be larger than the

thickness of the TiN coating in low frequency, and the wake

fields may interact with the outside world through the coat-

ing. It is thus important to construct a theory of resistive

insert taking into account its thickness effects.

We have developed a theory to describe the impedance of

a short insert by generalizing a theory of a gap, where the

respective components are sandwiched by perfectly con-

ductive chambers[1, 2]. The main difference between the

gap and the insert is that the insert has a finite skin depth,

and this skin depth effect will modulate how wake fields

propagate in the chamber. Main objective of this paper is

to study how the impedance of the insert will change from

that of the conventional resistive-wall theory to that of a

gap, when the thickness of the insert is changed compared

to the skin depth.

In numerical examples shown in figures, unless specified

otherwise, we consider a beam pipe radius a = 5 cm with

an insert of length g = 8 mm, and conductivity σc = 6 ×
106/Ω m. This can be a model for a short ceramic break

with TiN coating in a copper beam pipe.

LONGITUDINAL IMPEDANCE
The longitudinal coupling impedance of the resistive

short insert is expressed as
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Z0 = 120π, k = ω/cβ, k̄ = k/γ, ε′ is the relative dielec-

tric constant of the insert. Here, b2
s = k2β2a2 − j2

0,s =

−β2
s , j0,s are s-th zeros of J0(z) and H

(1)
m (z) is the Han-

kel function of the first kind. We should notice that bs ap-

proaches −jβs for j0,s > kβa.

At first, let us check the accuracy of the formula Eq.(1)

by comparing with ABCI results [3]. Recently, ABCI has

been upgraded and can now handle a resistive material in-

side a cavity. We choose the chamber thickness t = 2mm,

the relative dielectric constant of the insert ε′ = 10 and its

conductivity σc = 50[/Ωm]. In order to simulate correctly,

the mesh size should be sufficiently smaller than the cham-

ber thickness. In our case, it is divided into ten meshes. At

high frequency where the skin depth becomes smaller than

the mesh size, ABCI cannot accurately simulate field be-

havior. That is about 1GHz for the present choice of mesh

size. At higher frequency where the skin depth is smaller

than the mesh size, the theory predicts the insert impedance

better than the ABCI [1]. In ABCI, we put a huge cavity

in the outside of the insert to simulate open space. Fig-

ure 1 shows the comparison results of the real (left) and

the imaginary (right) parts of the impedance, respectively.

Quite good agreements can be seen between the two re-

sults.
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Figure 1: Comparison of the real (left) and the imaginary

(right) parts of the longitudinal impedance, calculated by

the present theory (red curves) and ABCI (blue curves), re-

spectively.

In this subsection, we assume that the chamber thickness

t satisfies the condition :

t > tmin ≡ (
4g

π2Z3
0σ3

c

)
1
4 . (4)

We exclude an extremely thin insert case here. This as-

sumption allows us to neglect the effect from ”radiation

terms” such as Ypole and Ycut in Eq.(1) in the low frequency

region where the skin depth exceeds the insert thickness t.
The thickness tmin is typically a few ten nm for a metallic

insert.

Krinsky et al and Stupakov [4, 5] studied the impedance

of a short insert. Their results indicate that when g �
(Z0σa4/4π)1/3 and

f � fD ≡ c

2π

√
2Z0σc

g
, (5)

(the frequency fD is typically of the order of THz in our

short insert in MKS unit), then

ZL � (1 − j)2Z0
√

g

2πa
√

πk
, (6)

and is proportional to
√

g.

Let us consider the case that the thickness of the insert is

larger than 21/2π3/4tmin and see if our theory can repro-

duce the formula Eq.(6) in the extremely high frequency

region f � fD. In this frequency region, we may take a

limit of t to infinity in Eq.(1), and the following inequality

can be applied to Eq.(1):

|Ycut| �
∣∣∣∣π

√
jkβZ0σc

k2β2w
+ Ypole

∣∣∣∣ . (7)

Then, Eq. (1) becomes

ZL,insert �
(1 − j)2Z0

√
g

2πaI2
0 (k̄a)

√
βπk

. (8)

Specifically for a relativistic beam, Eq.(8) reproduces

Eq.(6). These results show that the impedance decreases

in proportional to k−1/2 in the extremely high frequency,

as predicted by the diffraction theory [6].

In the intermediate region of f � fD where the skin

depth δ is still smaller than the insert thickness t, we can

apply the following inequality to Eq.(1):

|Ypole + Ycut| �
∣∣∣∣π

√
jkβZ0σc

k2β2w

∣∣∣∣ . (9)

We then obtain the conventional formula of the resistive-

wall impedance for a relativistic beam [7]:

ZL,insert � gZ0

√
2ω

cZ0σc

1 + j

4πa
, (10)

which is proportional to the length of the insert g.

In the low frequency region where the skin depth exceeds

the insert thickness t:

f < fδ ≡ c

πZ0σct2
, (11)

but the effect from radiation terms such as Ypole and Ycut

are still negligible in Eq.(1), we obtain

�[ZL,insert] � g

2πaσct
. (12)

When the thickness of the insert is smaller than

21/2π3/4tmin but larger than tmin, Eq.(12) becomes valid

all the way up to fD.

Before studying the thickness dependence of the insert

impedance, let us study the thickness dependence of the

resistive-wall impedance in order to compare them with our

results afterwards. We numerically calculate the resistive-

wall impedance for different thicknesses of the chamber

by borrowing the general formulae of the resistive-wall

impedance with finite thickness from Metral et al’s recent

work [8, 9]. The results for a relativistic beam are shown in

Fig.2. The red, the blue and the black lines show the cases

that the insert thickness t is equal to infinity, 10μm and

1μm, respectively. The impedance starts to deviate from

that for the infinitely thick chamber when the skin depth ex-

ceeds the chamber thickness. Apparently, the wake fields

leak out at low frequency. The dependence of ZL on the

conductivity σc, the frequency f and the chamber thick-

ness t, for the case that the skin depth exceeds t, can be

approximately written as

�[ZL] � 2gπZ2
0σcf

2t3

3ac2
. (13)

Dependence of the Insert Impedance on its Thick-
ness

Frequency-dependence and Length-dependence
of the Impedance
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Figure 2: The dependence of the real part of the longitu-

dinal resistive-wall impedance of a uniform beam pipe (no

insert) on the thickness of the chamber.

G

Figure 3: The thickness dependence of the longitudinal

impedance of the insert in the relativistic beam case.

Contrary to our intuition, the impedance becomes larger as

the conductivity of the material σc increases.

Now, let us discuss the properties of the impedance of the

insert by changing the thickness of it. The thickness depen-

dence of the real part of the insert impedance obtained by

Eq.(1) is shown in Fig.3. The red, the blue, the black, the

black dashed, the black dot, the green and the blue dashed

and the red dashed lines represent the cases that the thick-

ness t is equal to 100μm, 10μm, 1μm, 100 nm, 10 nm, 1
nm, 100 pm and 10 pm, respectively.

When the skin depth is smaller than the thickness of the

insert but the frequency f is lower than fD, the impedance

of the insert is identical to the resistive-wall impedance

given by Eq.(10) (see the results for the case that t is equal

to 100μm).

As we find from the result of t = 10μm in Fig.3, if the

skin depth exceeds the insert thickness (fδ � 0.42 GHz in

this case. See Eq.(11)), the real part of the impedance be-

comes independent of the frequency. The imaginary part is

still inductive for the insert with this thickness. This indi-

cates that the whole wall current runs in the thin insert, de-

spite of the fact that the skin depth exceeds the insert thick-

ness in most of frequencies. In other words, the beam cur-

rent is completely shielded by the wall current in the insert,

and the wake fields do not propagate out of the chamber. If

this picture is correct, the real part of impedance should be

equal to the resistance of the wall current Zwall. Actually,

the results of t = 1μm to t = 100 nm (even including the

result of 10 nm that is smaller than tmin) described in Fig.3

are equal to the resistance of the wall current Zwall:

Zwall =
g

σcπ((a + t)2 − a2)
� g

2πaσct
. (14)

This behavior of the insert impedance is quite different

from that of the resistive-wall impedance of the chamber

with finite thickness for a relativistic beam, which was dis-

cussed in the first paragraph of this subsection.

When the thickness of the insert is extremely thin like

t � tmin, the situation is quite different from the above

case. The results of t = 1nm to t = 10pm in Fig.3 corre-

spond to this case. The frequency fD and the skin depth δ
are no longer dominant parameters. The new parameter:

fc ≡ σ2
cZ2

0 t2c

4πg
, (15)

plays a more important role in the impedance. In the fre-

quency region f � fc, the contribution from the wall cur-

rent dominates in the impedance. In the rest of the fre-

quency, the radiation effects become dominant contribu-

tions. The dips for these cases in Fig.3 correspond to the

cut-off frequencies of the chamber. The imaginary part of

impedance becomes capacitive, which is opposite to the re-

sult of t > tmin.

The physical reason of why the whole wall current tends

to run on the thin insert except for the extremely thin insert

case is that the nature tries to minimize the energy loss of

a beam, which is smaller when the wall current runs on the

thin insert with large resistance than it converts to the radi-

ation out to free space(= gap impedance). When t � tmin,

the real part of the correct impedances using the present

theory is smaller than the hypothetical impedances calcu-

lated by extending the simple formula (14) to these extreme

thicknesses. The impedance i.e. the energy loss of a beam

becomes small by the wall current converting to outer radi-

ation than staying in the extremely thin insert.

TRANSVERSE IMPEDANCE

The expression for the transverse impedance ZT,insert is

given as

ZT,insert � − jZ0

2βγ2aI2
1 (k̄a)

/

(
−2π

√
jkβZ0σc

k2β2g
tanh

√
jkβZ0σct + Y ′

pole + Y ′
cut

)
,

(16)
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b1,s =
√

k2β2a2 − j2
1,s, b′1,s =

√
k2β2a2 − j′21,s, d′

1,0 =√
k2β2a2 − h′2

1,0, jn,s are the s-th zeros of Jn(z), j′1,s are

the s-th zeros of J ′
1(z) and h′

1,0 = 0.501184 + j0.643545:

the 0-th zero of H
′(2)
1 (z)(the differential of the Hankel

function of the second kind). We should notice that b′1,s

approaches −j
√

j′21,s − k2β2a2 for j′21,s > k2β2a2.

Similarly to the longitudinal case, let us examine the

frequency-dependence of the transverse impedance. We

start to study from the extremely high frequency and then

will gradually lower the frequency. When the thickness of

the insert is larger than 21/2π3/4tmin (see Eq.(4)), the wake

field leaks out of the insert in the high frequency region

specified by f � fD (see Eq.(5)). In this frequency range,

the transverse impedance is approximately given by

ZT � (1 − j)Z0

√
kg

8
√

2βγ2aI2
1 (k̄a)

, (19)

which becomes for a relativistic beam

ZT � (1 − j)Z0
√

g

2
√

2k3/2a3
. (20)

In the frequency region where f � fD but still the skin

depth is smaller than the insert thickness, the impedance is

approximately written as

ZT,insert �
√

jkβZ0gI1(k̄rb)
2γπrba

√
σcI2

1 (k̄a)
, (21)

Figure 4: The thickness dependence of the transverse

impedance of the insert for the relativistic beam case.

which reproduces the conventional resistive-wall

impedance for a relativistic beam: [7]

ZT,insert = gc

√
Z0ωσc

2c

1 + j

πσcωa3
. (22)

In a lower frequency where the skin depth exceeds the

thickness of the insert, the impedance becomes

�[ZT,insert] =
gc

2π2fa3σct
. (23)

When the thickness of the insert is smaller than

21/2π3/4tmin but larger than tmin, Eq.(23) gives correct

impedance all the way up to fD.

Finally, in the region of

f � fL ≡ 3c

4πZ0σcta
, (24)

the wake fields leak out of the insert again. It is almost

identical to the gap impedance Zgap,⊥ described in refer-

ence [2] and goes down toward zero as the frequency ap-

proaches to zero.

Now, we consider the thickness dependence of the insert.

The dependence of the real part of the insert impedance on

the insert thickness is shown in Fig.4. The red, the blue, the

black, the black dashed, the black dot, the green, the blue

dashed and the red dashed lines represent the cases for the

thickness t equal to 100μm, 10μm, 1μm, 100 nm, 10 nm,

1 nm, 100 pm and 10 pm, respectively.

Similar to the longitudinal case, we at first consider the

case that the thickness of the insert t is larger than tmin.

The result of t = 100μm in Fig.4 corresponds to the case

that the skin depth δ is smaller than the thickness of the in-

sert t, which reproduces Eq.(22). The results of t = 10μm

to t = 100nm in Fig.4 represent the case that the skin

depth δ exceeds the thickness of the chamber t except at

the low frequency extreme f � fL (See Eq.(24)). These

impedances (even including the result for 10 nm which

is smaller than tmin) agree very well with those obtained

from simple formula

�[ZT ] � 2βc

a2ω
Zwall =

βcg

2π2fa3σct
, (25)
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Figure 5: The dependence of the real part of the transverse

resistive-wall impedance of a uniform beam pipe (no insert)

on the thickness of the chamber.

where Zwall is identical to Eq.(14).

The case of t = 10μm especially helps us to understand

the behavior of the real part of the impedance, which starts

to deviate from Eq.(22) and becomes proportional to f−1

when the skin depth exceeds the insert thickness (f < fδ .

See Eq.(11)).

In the frequency region specified by fL < f < fδ , the

whole wall current runs on the thin insert, and wake fields

are still confined inside the chamber. Contrary to the lon-

gitudinal impedance, this picture of the insert impedance

is applicable to that of the resistive-wall impedance for the

transverse impedance.

In order to compare the resistive-wall impedance

with the insert impedance, we numerically calculate the

resistive-wall impedance for different thicknesses of the

chamber by borrowing the general formula of the resistive-

wall impedance with finite thickness from Metral et al’s
recent work [8, 9]. The results for a relativistic beam are

shown in Fig.5. The red, the blue, the black, the black

dashed and the black dot lines show the cases that the in-

sert thickness t is equal to infinity, 10μm, 1μm,100nm and

10nm, respectively. The entire wall current runs on the

chamber for the resistive-wall impedance as well, after the

skin depth exceeds the chamber thickness. But at the region

f < fL (but not quite lower as in the short insert) where

the skin depth is much larger than the chamber thickness,

the resistive-wall impedance starts to fall off.

In the case that the thickness of the insert t is extremely

thin like t � tmin, the situation becomes significantly dif-

ferent. The results of t = 1nm to 10 pm in Fig.4 correspond

to this case. The parameter fL should be replaced by a new

parameter:

fr ≡ 1
2π

(
2gc3

Z2
0σ2

ca4t2
)

1
3 . (26)

Contrary to the longitudinal case, fr as well as fc (see

Eq.(15)) are used to classify the property of the impedance

along the frequency axis. In the frequency region fr <
f � fc the contribution from the wall current domi-

nates in the impedance, while the radiation effects domi-

nate in the rest of the frequency. Since the wall current

effect dominates in the impedance in the frequency region

fr < f � fc, the impedance is proportional to the length

Figure 6: The transverse impedances for the case of t �
tmin. The green solid and dashed, the blue solid and

dashed, and the red solid and dashed lines show the cases

that the thickness of the insert t is equal to 1nm, 100 pm

and 10 pm, respectively. The solid lines are based on the

present theory, while the dashed lines are calculated hy-

pothetically by extending the simple formula (25) to these

extreme thicknesses.

of the insert g. The impedance is proportional to
√

g in the

higher frequency region, as the contributions from the ra-

diation dominate in the impedance. The wake field makes

dips in the impedance curve for the frequency that is larger

than the cut-off frequency of the chamber. Especially, in

the case of the infinitesimally thin insert, the impedance is

identical to the gap impedance, in the entire frequency.

Like the longitudinal case, the transition thickness of the

insert at which the wall current starts converting to the outer

radiation from running on the thin insert is determined by

which case minimizes the impedance and thus the energy

loss of a beam. Figure 6 demonstrates this fact by com-

paring the correct impedances with the hypothetical ones

obtained by extending the simple formula (25) to these ex-

treme thicknesses.

SUMMARY
The theory to describe the impedances of a short insert

has been developed. The theory is consistent with the con-

ventional resistive-wall impedance and the gap impedance.

Even in the thin insert the entire image current runs on

the insert, and therefore the impedances increase drasti-

cally from the conventional resistive-wall impedance [7].
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