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Abstract
Physics of chaos in a localized phase-space region is

exploited to produce a longitudinally uniformly distributed
beam. Theoretical study and simulations are used to study
its origin and applicability in phase-space dilution of beam
bunch. Through phase modulation to a double-rf system,
a central region of localized chaos bounded by invariant
tori are generated by overlapping parametric resonances.
Condition and stability of the chaos will be analyzed.
Applications include high-power beam, beam distribution
uniformization, and industrial beam irradiation.

INTRODUCTION
ALPHA, under construction at IU CEEM, is a 20-m

electron storage ring. [1] The project calls for storing a
tiny synchrotron-radiation-dampedbunch to be extended to
about 40 ns with uniform longitudinal distribution. RF bar-
riers should be the best candidate for bunch lengthening.
Unfortunately, this ring is only 66.6 ns in length, and the
widths of the barriers must be of the order of 10 ns or less.
The risetime of the barrier voltage will therefore be a few
ns, or the rf generating the barrier voltage will be in the fre-
quency range of a few hundred MHz. Ferrite is very lossy
at such high frequencies and is therefore unsuitable for the
job. Even if another material could be substituted, the bar-
riers of such narrow widths would require very high rf peak
voltage; the rf system would be very costly.

Another way to achieve bunch lengthening is to perform
phase modulation of the rf wave so as to produce a large
chaotic region at the center of the rf bucket, but bounded
by well-behaved tori. The beam at the bucket center will
be blown up to the much larger chaotic region. If true
chaoticity is achieved, the particle distribution will be uni-
form. Such an idea has been demonstrated experimentally
at the IUCF Cooler ring in 1997, [2] where a double-rf sys-
tem was used and the diffusion was found rather sensitive
to the phase difference Δφ0 between the two rf waves. In
this paper, the modulation method is further investigated by
first determining the choice of Δφ0, and next analyzing the
condition and stability of the localized chaotic region.

THE MODEL
The model to be studied is described by the Hamiltonian

H = H0 +H1, where [3]

H0=
1

2
νsδ

2+νs

{
1−cosφ− r

h

[
1−cos(hφ+Δφ0)

]}
,

H1 = aδνs sin(νmθ + η). (1)
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Here r is the ratio of the two rf voltages, h is the ratio of
the two rf harmonics, νs is the small-amplitude synchrotron
tune in the absence of the second rf, νm is the phase modu-
lation tune, η is the modulation phase, a is the modulation
amplitude, φ is the rf phase, δ is the canonical momen-
tum offset, and θ advances by 2π per revolution turn. This
model entails a number of parameters. In this paper, how-
ever, we restrict ourselves to the special case of r = 1/2,
h = 2, νm/νs = 2, and η = 0, thus leaving behind only
the phase offset Δφ0 and the modulation amplitude a.

Choice of Δφ0

The action at the bottom of an rf potential well V (φ) is
zero and so are the resonance strengths generated by phase
modulation (see Fig. 4 below). Since the bunch will be tiny,
it will be difficult to be driven into parametric resonances
if it sits at the bottom of the rf potential. This explains why
a two-rf system is necessary. The phase difference Δφ0

between the two rf’s shifts the potential-well bottom away
from the center of the longitudinal phase space, where the
tiny bunch is located. The action at the bunch is now finite.
Thus the farther the potential-well bottom is shifted, the
larger the resonant strengths.

To generate a large region of chaoticity, the eventual
modulation amplitude a will be large. However, a pertur-
bative approach is taken in the analysis so as to get a ball-
park understanding of the mechanism. For the unperturbed
Hamiltonian, the position of the potential-well bottom φ0 is
given by V ′(φ0)/νs = sinφ0−r sin(hφ0+Δφ0) = 0, and
is at a maximum when V ′′(φ0) = 0. This leads to the solu-
tion φ0 = ± sin−1 r. The corresponding phase difference
between the two rf’s is therefore (see Fig. 1)

Δφ0 =
π

2
− h sin−1 r. (2)

When h=1/r=2, the largest offset of well bottom is φ0=
±30◦ and the corresponding phase difference between the
two rf’s is Δφ0 = ±30◦. Simulations show that diffusion
of a tiny bunch at the phase-space center is possible when
20◦ � |Δφ0| � 50◦. In below, we first study the case of
Δφ0 = 30◦, and attempt another value later.

Figure 1:
Offset of
potential-
well bottom
φ0 as a
function of
rf phase
difference
Δφ0 at h =
1/r = 2.
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Synchrotron Tune and Resonance Strengths
For the unperturbed Hamiltonian, the action and angle of

an oscillatory orbit are given by

J =
1

2π

∮
δ(φ)dφ, ψ =

Qs
νs

∫ φ

φ1

dφ′

δ(φ′)
, (3)

where φ1 is smaller end of the phase excursion. When φ
reaches the larger end of the phase excursion φ = φ2 while
ψ advances by π, the synchrotron tuneQs of the oscillatory
torus can be extracted, and is depicted in Fig. 2, where the
asymmetric rf potential is also plotted in dot-dashes. With
the modulation tune νm/νs = 2 (horizontal line), we see
that the tiny bunch at the phase-space center will be driven
into 3:1 and 5:2 resonances. The synchrotron tune can also
be computed as a function of the action J , and this is de-
picted in Fig. 3. It is important to point out that we require
the synchrotron tune to be large at the central part than the
edges of the phase space, because we wish to have a central
chaotic region bounded by well-behaved tori.

To express the perturbative Hamiltonian H1 of Eq. (1)
in terms of action-angle variables, the reduced momentum

−3 −2 −1 0 1 2 3
Ends of Torus φ1 or φ2  (rad)

0.5

1.0

1.5

2.0

2.5

Q
s/ν

s o
r 

R
F

 P
ot

en
tia

l

1x

2x

3x4x

V(φ1,2)
h=1/r=2 Δφ0=30

o

νm/νs

5/2x

Figure 2: (color) Synchrotron tune Qs/νs versus oscillating
torus smaller end φ1 or larger end φ2, with h = 1/r = 2 and
Δφ0 = 30◦. Some multiples are also plotted to illustrate the
possible parametric resonances driven the phase modulation tune
νm/νs=2 (horizontal line.) The asymmetric rf potential is shown
in dot-dashes.
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Figure 3: (color) Synchrotron tune Qs/νs and its multiples as
functions of action J , with h = 1/r = 2 and Δφ = 30◦. The rf
potential V (J) is shown in dot-dashes.

offset δ is expanded into Fourier series,

δ=

∞∑
n=−∞

gn(J)e
inψ , gn(J)=

1

2π

∫ π

−π
δe−inψdψ. (4)

Keeping only the first-order perturbative terms, the Hamil-
tonian can now be expressed as

H=H0(J) + aνs

{∑
n>0

|gn(J)|
[
sin(νmθ+η+χn+nψ)

+ sin(νmθ+η+χn−nψ)
]
+ g0(J) sin(νmθ+η)

}
, (5)

with χn the phase of gn, showing all the first-order para-
metric resonances. The resonance strength function |gn| is
a measure of its ability to drive the n : 1 parametric reso-
nance, and is depicted in Fig. 4 for n=1 to 4. Note that all
the strength functions vanish at J = 0, which is the reason
why we need to shift the potential-well bottom away from
the center of the phase space. Because of the asymmetry of
δ(φ), gn(J) no longer vanishes when n is even, implying
that both 2:1 and 3:1 resonances can be excited depending
on the choice of the modulation tune νm.
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Figure 4: (color) Resonance strengths |gn(J)| as functions of the
action J for n :1 parametric resonances, with n≤4, h=1/r=2.

SIMULATIONS WITH Δφ0 = 30◦

Simulation is performed by tracking each macro-particle
from the k-th turn to the (k+1)-th turn according to the
Hamiltonian of Eq. (1):

φk+1=φk+2πνs
[
δk+a sin(2πkνm)

]
,

δk+1=δk−2πνs
[
sinφk+1−r sin(hφk+1 +Δφ0)

]
, (6)

where the assumption of slowly varying particle position
within a turn has been applied. The modulation period has
been chosen to be exactly 515 turns with νm/νs = 2. The
modulation phase has been taken to be η = 0. Other values
of η will lead to different rotated stroboscopic views of the
tracking results. However, all the conclusions on diffusion
and beam enlargement will not be affected.

We first study the structure of the phase space at mod-
ulation amplitude a = 8◦ and Δφ0 = 30◦, as depicted
in Fig. 5. This is the cumulative stroboscopic modulation-
period views in half million turns. The central stable re-
gion is bounded by the 5:2 resonance. After that we see
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Figure 5: Structure of phase space at a = 8◦ and Δφ0 = 30◦.

Figure 6: (color) Black: Diffusion of a tiny Gaussian bunch
of rms spread σφ = 0.001 rad at phase-space center at the last
modulation period in 1.2 million turns. Modulation amplitude
is a = 58◦. Red: Stroboscopic plot of one particle initially at
φ = 0.94 rad and δ = 0 at every modulation period.

the remnant of the 8:3 resonance which merges partially
with the 3:1 resonance. Then comes the 25:8 resonance
and the well-behaved tori. In order for the bunch, initially
at the phase-space center, to be enlarged via diffusion, we
require the 5:2 resonance to collapse and the central stable
region to shrink so that the bunch is inside the chaotic re-
gion initially. This occurs when the modulation amplitude
increases to a = 46◦.

Next a Gaussian distributed bunch of rms spread σφ =
0.001 rad consisting of 10000 macro-particles at the center
of the longitudinal phase space is tracked. The particle dis-
tribution with modulation amplitude a = 58◦ is shown in
Fig. 6 at the last modulation period in 1.2 million turns. Es-
sentially, the tiny bunch at the phase-space center is driven
into the thick stochastic layers surrounding the separatri-
ces of the 3:1 resonance. The thick stochastic layers, on
the other hand, come from the overlapping of the 5:2, 8:3,
and possibly many other higher-order resonances, which
are not included in the first order perturbation of the mod-
ulation presented in Eq. (5). The distribution appears to be
uniform except for the four big empty space, where the four
stable fixed points of the 3:1 resonance are located. The
rms beam size is computed turn by turn and is depicted in

Figure 7: (color) Longitudinal bunch size versus turn number at
a = 58◦ and Δφ0 = 30◦ as diffusion develops.

Fig. 7. We see that the rms-bunch-size squared, σ2
φ or σ2

δ ,
grows linearly with turn number, signaling that the bunch
enlargement is indeed a diffusion process. The growth lev-
els off after about 1× 105 to 2× 105 turns. The rms phase
and momentum spreads increase to σφ = 0.81 ± 0.03 rad
and σδ = 0.57± 0.01, respectively.

We next continue the tracking by doubling the number
of turns; the distribution remains bounded and the pat-
tern does not change. We also track a particle initially at
φ = 0.94 rad and δ = 0 for 1×105 turns. Its positions at
every modulation period are shown as red dots in Fig. 6.
These red dots constitute a well-behaved chain of islands,
confirming that the diffused bunch will be well-bounded.

Variation of Modulation Amplitude
When the modulation amplitude is varied from a = 46◦

to 70◦, there is not much difference in the shape of the final
diffused bunch distribution. The only significant change
is the gradual left-shifting of the chaotic pattern in Fig. 6,
which is a consequence of the detuning of the synchrotron
tune Qs as the modulation amplitude a increases. The dif-
fused rms phase and momentum spreads are still roughly
at σφ ≈ 0.8 rad and σδ ≈ 0.58, respectively, as depicted
in Fig. 8. When the modulation strength is increased past
a = 70◦, suddenly no diffusion is observed independent of
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Figure 8: (color) Bunch spreads after diffusion at various modu-
lation amplitudes with Δφ0 = 30◦.
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Figure 9: Stroboscopic plot of phase-space structure at a = 104◦

and Δφ = 30◦, showing that the bunch original position lies on a
well-behaved torus completely outside the chaotic region.

how long the simulations are performed. This turns out to
be the moment when the rightmost empty region in Fig. 6
has been left-shifted to include the phase-space origin. The
bunch is now inside the rightmost island of the 3:1 reso-
nance making small tori around the stable fixed points of
the 3:1 resonance.

The diffusion of the bunch does return when the mod-
ulation strength increases up to a ≥ 85◦. Now the three
outside islands of the 3:1 resonance are completely filled
up by higher-order resonances so that the tiny bunch ini-
tially at the phase-space center can diffuse outward again.

As the modulation amplitude continues to increase, the
phase-space structure tends to contract and shift further to
the left. As a > 94◦, the bunch original position moves
out of the chaotic region and no diffusion occurs. A typical
phase-space pattern at a = 104◦ is shown in Fig. 9. As a
increases past 110◦, beam loss occurs.

SIMULATIONS WITH Δφ0 = 45◦

Figures 2 and 3 shows that the approximate intercepts
of horizontal line νm/νs = 2 with the 3 × Qs/νs curve
are far away from the initial location of the particle bunch.
In other words, the bunch is initially far from the unstable
fixed points of the 3:1 resonance. This limits the bunch
from falling inside the stochastic layers surrounding the
separatrices unless the modulation amplitude is sufficiently
large. Figure 4 shows that the strength function of the 3:1
resonance is much smaller than that of the 2:1 resonance
and as a result very large modulation amplitude has to be
employed. All these reasons educe us to a deviation from
the maximum potential-well-bottom offset. Here, we try
the rf phase difference Δφ0 = 45◦, which leads to a well-
bottom offset of φ0 = 29.12◦, which is only 3% less than
the maximum value of 30◦. This explains why the range of
Δφ0 that can produce bunch lengthening is not too narrow.

Corresponding to Fig. 3, the synchrotron tune as a func-
tion of action for Δφ0 = 45◦ is shown in Fig. 10. Observe
that where the horizontal line νm/νs=2 cuts the 2×Qs/νs
curve is extremely close to J=0.053, the initial location of
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Figure 10: (color) Synchrotron tune Qs/νs as a function of ac-
tion J , with h = 1/r = 2 and Δφ0 = 45◦. 2×, 5/2×, and
3×Qs/νs are also plotted to illustrate the possible parametric res-
onances driven at the phase modulation frequency νm/νs = 2.
The rf potential V (J) is shown in dot-dashes.

Figure 11: Structure of phase space at a = 7◦ and Δφ0 = 45◦.

bunch, implying close proximity of the bunch from an un-
stable fixed point of the 2:1 resonance. We should expect
diffusion to occur at relatively smaller modulation ampli-
tudes. The resonance strength functions for Δφ0 =45◦ do
not differ much in value from those forΔφ0=30◦ in Fig. 4.

The phase-space structure when Δφ0 = 45◦ and a = 7◦

is illustrated in Fig. 11. We first notice that the phase-
space center is very close to the 2:1 resonance as specu-
lated. However, the tiny bunch there can only spread out
inside the thin stochastic layers of the 2:1 resonance, and
cannot reach the larger chaotic region between the island
chains of the 8:5 and 7:3 resonances. The bunch can dif-
fuse into this region only when the chains of higher-order
islands enclosing the 2:1 resonance collapse. This happens
when a ≈ 9◦, which explains the rapid jump of simulated
bunch-spread results from a = 8◦ to 10◦ in Fig. 12.

A typical diffused bunch distribution is shown in Fig. 13,
corresponding to modulation amplitude a=28◦ at the last
modulation period after roughly 0.5 million turns. Com-
pared with Fig. 6 at Δφ0=30◦, it is evident that the chaotic
area is much larger and the empty space inside is very much
smaller. It also looks much more rectangular, and will pro-
vide a more uniform linear density. At the same time the
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Figure 12: (color) Bunch spreads at various modulation ampli-
tudes with Δφ0 = 45◦.

Figure 13: (color) Black: Bunch distribution at the last modula-
tion period after ∼0.5 million turns with a=28◦ and Δφ=45◦.
Red: Stroboscopic plot of one particle initially at φ = 0.94 rad
and δ = 0 at every modulation period.

modulation amplitude a = 28◦ is about one-half smaller.
The red dots are stroboscopic loci of one particle initially
located at φ=1.46 rad and δ=0. These loci provide a well-
behaved torus bounding the diffused bunch. The rms phase
and momentum-offset spreads shown in Fig. 14 reveal lin-
ear growths of σ2

φ and σ2
δ , demonstrating the occurrence of

diffusion. Compared with Fig. 7 at Δφ0=30◦, equilibrium
is reached much earlier. This is understandable because the
bunch initially is much closer to the separatrices of the 2:1
resonance, and obviously, will take less time to diffuse. As
illustrated in Fig. 12, there is another jump of beam size
around a ≈ 20◦. This can be explained by the hump of the
synchrotron frequency around action J ≈ 0.7 in Fig. 10.
As a result, there are two sets of 8:3 resonances, one go-
ing out and one coming in as the modulation amplitude a
increases. The one going out has already broken at a ≈ 7.
The incoming set encircling the chaotic region starts col-
lapsing around a = 20◦, and the chaotic region is increased
after that. This is illustrated in Fig. 15.

CONCLUSION
We have devised a method of phase modulation of the rf

wave to create a large chaotic region in the central longi-
tudinal phase space bounded by well-behaved tori. To ac-

Figure 14: (color) Longitudinal bunch-size squared turn by turn
at a=28◦ and Δφ0=45◦ as diffusion develops.

Figure 15: (color) Black: Bunch distribution at the last modula-
tion period after ∼0.5 million turns at a = 9.8◦ and Δφ0 = 45◦.
Red: A chain of 8 islands forming a boundary for the diffused
region. At an increase to a ≈ 20◦, the separatrices of the island
chain collapse, and the islands join the region of diffusion.

complish this, we require (1) large modulation amplitude
so that the higher-order parametric resonances collapse to
form a large chaotic area, and (2) the initial position of
the tiny bunch inside part of this chaotic region. Since the
bunch is initially located at the phase-space center, we must
offset the relative phase of the two-rf system so that the
potential-well bottom is shifted away from the phase-space
center. The maximum well-bottom offset and the corre-
sponding relative phase difference between the two rf’s are
computed.
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