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Abstract

Physics of chaos in a localized phase-space region is
exploited to produce alongitudinally uniformly distributed
beam. Theoretical study and simulations are used to study
its origin and applicability in phase-space dilution of beam
bunch. Through phase modulation to a double-rf system,
a central region of localized chaos bounded by invariant
tori are generated by overlapping parametric resonances.
Condition and stability of the chaos will be analyzed.
Applications include high-power beam, beam distribution
uniformization, and industrial beam irradiation.

INTRODUCTION

ALPHA, under construction at IU CEEM, is a 20-m
electron storage ring. [1] The project calls for storing a
tiny synchrotron-radiation-damped bunch to be extended to
about 40 nswith uniform longitudinal distribution. RF bar-
riers should be the best candidate for bunch Iengthening.
Unfortunately, thisring is only 66.6 ns in length, and the
widths of the barriers must be of the order of 10 nsor less.
The risetime of the barrier voltage will therefore be a few
ns, or the rf generating the barrier voltage will bein thefre-
guency range of afew hundred MHz. Ferrite is very lossy
at such high frequencies and is therefore unsuitable for the
job. Even if another material could be substituted, the bar-
riers of such narrow widths would require very high rf peak
voltage; the rf system would be very costly.

Another way to achieve bunch lengthening isto perform
phase modulation of the rf wave so as to produce a large
chagtic region at the center of the rf bucket, but bounded
by well-behaved tori. The beam at the bucket center will
be blown up to the much larger chaotic region. If true
chaoticity is achieved, the particle distribution will be uni-
form. Such an idea has been demonstrated experimentally
at the IUCF Cooler ringin 1997, [2] where adouble-rf sys-
tem was used and the diffusion was found rather sensitive
to the phase difference A¢o between the two rf waves. In
this paper, the modul ation method is further investigated by
first determining the choice of A¢, and next analyzing the
condition and stability of the localized chaotic region.

THE MODEL

The model to be studied is described by the Hamiltonian
H = Hy + H;,where[3]

1
Hy= §V352+VS {1—cos¢— % [1 —cos(hd)—&-A%)] },
Hy = advgsin(vpy,b + 1). D
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Here r is the ratio of the two rf voltages, h is the ratio of
thetwo rf harmonics, v isthe small-amplitude synchrotron
tune in the absence of the second rf, v,,, is the phase modu-
lation tune, 7 is the modulation phase, a is the modulation
amplitude, ¢ is the rf phase, § is the canonical momen-
tum offset, and 6§ advances by 27 per revolution turn. This
model entails a number of parameters. In this paper, how-
ever, we restrict ourselves to the special case of r = 1/2,
h =2, v, /vs = 2,and n = 0, thus leaving behind only
the phase offset A¢y and the modulation amplitude a.

Choice of Agy

The action at the bottom of an rf potential well V(¢) is
zero and so are the resonance strengths generated by phase
modulation (see Fig. 4 below). Sincethe bunch will betiny,
it will be difficult to be driven into parametric resonances
if it sits at the bottom of the rf potential. This explainswhy
a two-rf system is necessary. The phase difference A¢g
between the two rf’s shifts the potential-well bottom away
from the center of the longitudinal phase space, where the
tiny bunch islocated. The action at the bunch is now finite.
Thus the farther the potential-well bottom is shifted, the
larger the resonant strengths.

To generate a large region of chacticity, the eventua
modulation amplitude a will be large. However, a pertur-
bative approach is taken in the analysis so as to get a ball-
park understanding of the mechanism. For the unperturbed
Hamiltonian, the position of the potential-well bottom ¢ is
givenby V' (o) /vs = sin g —r sin(hpo+Agy) = 0, and
isat amaximumwhen V" (¢¢) = 0. Thisleadsto the solu-
tion ¢ = +sin~! r. The corresponding phase difference
between the two rf’sis therefore (see Fig. 1)

Ady = g — hsin~lr. @

When h=1/r =2, thelargest offset of well bottomis ¢, =
+30° and the corresponding phase difference between the
two rf'sis A¢py = £30°. Simulations show that diffusion
of atiny bunch at the phase-space center is possible when
20° < |A¢o| < 50°. In below, we first study the case of
Agg = 30°, and attempt another value later.
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Synchrotron Tune and Resonance Strengths

For the unperturbed Hamiltonian, the action and angle of
an oscillatory orbit are given by
Qs [* do

1
1= g fotoe. v=2 [ @

where ¢, is smaller end of the phase excursion. When ¢
reaches the larger end of the phase excursion ¢ = ¢ 5 while
1) advancesby , the synchrotrontune @ , of the oscillatory
torus can be extracted, and is depicted in Fig. 2, where the
asymmetric rf potential is also plotted in dot-dashes. With
the modulation tune v,,, /v, = 2 (horizontal line), we see
that the tiny bunch at the phase-space center will be driven
into 3:1 and 5:2 resonances. The synchrotron tune can also
be computed as a function of the action .J, and thisis de-

picted in Fig. 3. It isimportant to point out that we require
the synchrotron tune to be large at the central part than the
edges of the phase space, because we wish to have a central

chaatic region bounded by well-behaved tori.

To express the perturbative Hamiltonian H; of Eq. (1)
in terms of action-angle variables, the reduced momentum
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Figure 2: (color) Synchrotron tune Qs /vs versus oscillating

torus smaller end ¢; or larger end ¢z, with h = 1/r = 2 and

Ag¢o = 30°. Some multiples are also plotted to illustrate the

possible parametric resonances driven the phase modulation tune

vm /vs =2 (horizontal line.) Theasymmetric rf potential isshown
in dot-dashes.
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Figure 3: (color) Synchrotron tune Q,/vs and its multiples as
functions of action J, withh = 1/r = 2 and A¢ = 30°. Therf
potential V'(.J) is shown in dot-dashes.
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offset § is expanded into Fourier series,

oo

5= 32 gD, gD =g [ ey, @)

n=-—o00 -

Keeping only the first-order perturbative terms, the Hamil-
tonian can now be expressed as

H=Hy(J)+ aus{z lgn(J)] [sin(um9+n+xn+n¢)
n>0

+ sin(l/m9+n+xn—nw)} + go(J) Sin(l/m9+n)}, (5)

with v, the phase of g,,, showing al the first-order para-
metric resonances. The resonance strength function |g | is
a measure of its ability to drive the n : 1 parametric reso-
nance, and is depicted in Fig. 4 for n=1 to 4. Note that all

the strength functionsvanish at J = 0, which is the reason
why we need to shift the potential-well bottom away from
the center of the phase space. Because of the asymmetry of

d(¢), gn(J) no longer vanishes when n is even, implying
that both 2:1 and 3:1 resonances can be excited depending

on the choice of the modulation tune v,
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Figure4: (color) Resonance strengths |g» (J)| asfunctions of the
action J for n: 1 parametric resonances, withn <4, h=1/r=2.

SIMULATIONSWITH A¢e = 30°

Simulation is performed by tracking each macro-particle
from the k-th turn to the (k + 1)-th turn according to the
Hamiltonian of Eq. (1):

Ok+1 =+ 2TV, [5k +a sin(?wkym)] ,

St1 =0k — 2705 [ sin dp 1 —7sin(hdry1 + Ado)], (6)
where the assumption of slowly varying particle position
within aturn has been applied. The modulation period has
been chosen to be exactly 515 turnswith v,,, /vs = 2. The
modulation phase has been teken to be, = 0. Other values
of n will lead to different rotated stroboscopic views of the
tracking results. However, al the conclusions on diffusion
and beam enlargement will not be affected.

We first study the structure of the phase space at mod-
ulation amplitude a« = 8° and A¢y = 30°, as depicted
in Fig. 5. Thisis the cumulative stroboscopic modulation-
period views in haf million turns. The central stable re-
gion is bounded by the 5:2 resonance. After that we see

Beam Dynamics in High-Intensity Circular Machines
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Figure 5: Structure of phase space at @ = 8° and A¢o = 30°.
1.5
T ‘ ‘ T

1.0

0.5

Momentum Offset &

e

-1 0
Phase ¢ (rad)

Figure 6: (color) Black: Diffusion of atiny Gaussian bunch
of rms spread o4 = 0.001 rad at phase-space center at the last
modulation period in 1.2 million turns. Modulation amplitude
isa = 58°. Red: Stroboscopic plot of one particle initialy at
¢ = 0.94 rad and § = 0 at every modulation period.

the remnant of the 8:3 resonance which merges partially
with the 3:1 resonance. Then comes the 25:8 resonance
and the well-behaved tori. In order for the bunch, initialy
at the phase-space center, to be enlarged via diffusion, we
require the 5:2 resonance to collapse and the central stable
region to shrink so that the bunch is inside the chaotic re-
gioninitially. This occurs when the modulation amplitude
increasesto a = 46°.

Next a Gaussian distributed bunch of rms spread oy, =
0.001 rad consisting of 10000 macro-particlesat the center
of the longitudinal phase spaceistracked. The particle dis-
tribution with modulation amplitude ¢ = 58° is shown in
Fig. 6 at thelast modulation periodin 1.2 million turns. Es-
sentialy, the tiny bunch at the phase-space center is driven
into the thick stochastic layers surrounding the separatri-
ces of the 3:1 resonance. The thick stochastic layers, on
the other hand, come from the overlapping of the 5.2, 8:3,
and possibly many other higher-order resonances, which
are not included in the first order perturbation of the mod-
ulation presented in Eq. (5). The distribution appearsto be
uniform except for the four big empty space, wherethe four
stable fixed points of the 3:1 resonance are located. The
rms beam size is computed turn by turn and is depicted in
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Figure 7: (color) Longitudina bunch size versus turn number at
a = 58° and A¢o = 30° asdiffusion develops.

Fig. 7. We see that the rms-bunch-size squared, o or o3,
grows linearly with turn number, signaling that the bunch
enlargement is indeed a diffusion process. The growth lev-
els off after about 1 x 10° to 2 x 10° turns. The rms phase
and momentum spreads increase to o4 = 0.81 & 0.03 rad
and o5 = 0.57 4 0.01, respectively.

We next continue the tracking by doubling the number
of turns; the distribution remains bounded and the pat-
tern does not change. We also track a particle initialy at
¢ =0.94rad and 6 = 0 for 1 x 10° turns. Its positions at
every modulation period are shown as red dots in Fig. 6.
These red dots constitute a well-behaved chain of islands,
confirming that the diffused bunch will be well-bounded.

Variation of Modulation Amplitude

When the modulation amplitude is varied from a = 46°
to 70°, thereis not much differencein the shape of thefinal
diffused bunch distribution. The only significant change
is the gradual |eft-shifting of the chaotic pattern in Fig. 6,
which is a consequence of the detuning of the synchrotron
tune @, as the modulation amplitude a increases. The dif-
fused rms phase and momentum spreads are still roughly
a o4 ~ 0.8 rad and o5 ~ 0.58, respectively, as depicted
in Fig. 8. When the modulation strength is increased past
a = 70°, suddenly no diffusion is observed independent of
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Figure 8: (color) Bunch spreads after diffusion at various modu-
lation amplitudes with A¢o = 30°.
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Figure 9: Stroboscopic plot of phase-space structure at a = 104°
and A¢ = 30°, showing that the bunch original position lieson a
well-behaved torus completely outside the chaotic region.

how long the simulations are performed. This turns out to
be the moment when the rightmost empty region in Fig. 6
has been | eft-shifted to include the phase-space origin. The
bunch is now inside the rightmost island of the 3:1 reso-
nance making small tori around the stable fixed points of
the 3:1 resonance.

The diffusion of the bunch does return when the mod-
ulation strength increases up to a > 85°. Now the three
outside islands of the 3:1 resonance are completely filled
up by higher-order resonances so that the tiny bunch ini-
tialy at the phase-space center can diffuse outward again.

As the modulation amplitude continues to increase, the
phase-space structure tends to contract and shift further to
the left. Asa > 94°, the bunch origina position moves
out of the chaotic region and no diffusion occurs. A typical
phase-space pattern at a = 104° isshown in Fig. 9. Asa
increases past 110°, beam loss occurs.

SIMULATIONSWITH A¢e = 45°

Figures 2 and 3 shows that the approximate intercepts
of horizonta line v,,, /vs = 2 with the 3 x Q,/v, curve
are far away from the initial location of the particle bunch.
In other words, the bunch is initially far from the unstable
fixed points of the 3:1 resonance. This limits the bunch
from faling inside the stochastic layers surrounding the
separatrices unless the modul ation amplitudeis sufficiently
large. Figure 4 shows that the strength function of the 3:1
resonance is much smaller than that of the 2:1 resonance
and as a result very large modulation amplitude has to be
employed. All these reasons educe us to a deviation from
the maximum potential-well-bottom offset. Here, we try
the rf phase difference A¢y = 45°, which leads to a well-
bottom offset of g =29.12°, which is only 3% less than
the maximum value of 30°. This explainswhy the range of
A that can produce bunch lengthening is not too narrow.

Corresponding to Fig. 3, the synchrotron tune as a func-
tion of action for A¢g = 45° isshownin Fig. 10. Observe
that wherethe horizontal linev,,, /v, =2 cutsthe2 x Qs /v,
curveisextremely closeto J =0.053, theinitial location of
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Figure 10: (color) Synchrotron tune Q /v, as afunction of ac-

tion J, withh = 1/r = 2 and A¢go = 45°. 2x, 5/2x, and

3xQs/vs aredso plotted to illustrate the possible parametric res-

onances driven at the phase modulation frequency v /vs = 2.

The rf potential V' (.J) is shown in dot-dashes.
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Figure 11: Structure of phase spaceat a = 7° and Agy = 45°.

bunch, implying close proximity of the bunch from an un-
stable fixed point of the 2:1 resonance. We should expect
diffusion to occur at relatively smaller modulation ampli-
tudes. The resonance strength functionsfor A¢g = 45° do
not differ muchin valuefromthosefor A¢,=30° inFig. 4.

The phase-space structure when A¢y = 45° and a = 7°
is illustrated in Fig. 11. We first notice that the phase-
space center is very close to the 2:1 resonance as specu-
lated. However, the tiny bunch there can only spread out
inside the thin stochastic layers of the 2:1 resonance, and
cannot reach the larger chaotic region between the island
chains of the 8:5 and 7:3 resonances. The bunch can dif-
fuse into this region only when the chains of higher-order
islands enclosing the 2:1 resonance collapse. This happens
when a = 9°, which explains the rapid jump of simulated
bunch-spread resultsfrom a = 8° to 10° in Fig. 12.

A typical diffused bunch distributionis shownin Fig. 13,
corresponding to modulation amplitude ¢ = 28 ° at the last
modulation period after roughly 0.5 million turns. Com-
pared with Fig. 6 at A¢o=30°, itisevident that the chaotic
areaismuch larger and the empty spaceinsideisvery much
smaller. It also looks much more rectangular, and will pro-
vide a more uniform linear density. At the same time the

Beam Dynamics in High-Intensity Circular Machines
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Figure 12: (color) Bunch spreads at various modulation ampli-
tudes with A¢go = 45°.
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Figure 13: (color) Black: Bunch distribution at the last modula-
tion period after ~ 0.5 million turns with a =28° and A¢=45°.
Red: Stroboscopic plot of one particle initialy at ¢ = 0.94 rad
and § = 0 at every modulation period.

modulation amplitude a = 28° is about one-half smaller.
The red dots are stroboscopic loci of one particle initially
located at ¢ =1.46 rad and § =0. Theseloci provideawell-
behaved torus bounding the diffused bunch. The rms phase
and momentum-offset spreads shown in Fig. 14 reveal lin-
ear growths of o2 and o2, demonstrating the occurrence of
diffusion. Compared with Fig. 7 at A¢o=30°, equilibrium
is reached much earlier. Thisis understandable because the
bunch initially is much closer to the separatrices of the 2:1
resonance, and obviously, will take lesstime to diffuse. As
illustrated in Fig. 12, there is another jump of beam size
around a = 20°. This can be explained by the hump of the
synchrotron frequency around action J ~ 0.7 in Fig. 10.
As a result, there are two sets of 8:3 resonances, one go-
ing out and one coming in as the modulation amplitude a
increases. The one going out has already brokenat a ~ 7.
The incoming set encircling the chaotic region starts col-
lapsing around ¢ = 20°, and the chaotic regionisincreased
after that. Thisisillustrated in Fig. 15.

CONCLUSION

We have devised a method of phase modulation of the rf
wave to create a large chaotic region in the central longi-
tudinal phase space bounded by well-behaved tori. To ac-
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Figure 14: (color) Longitudina bunch-size squared turn by turn
at a=28° and A¢o =45° as diffusion develops.
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Figure 15: (color) Black: Bunch distribution at the last modula-
tion period after ~ 0.5 millionturnsat a = 9.8° and A¢o = 45°.
Red: A chain of 8 islands forming a boundary for the diffused
region. At an increase to a ~ 20°, the separatrices of the island
chain collapse, and the islands join the region of diffusion.

complish this, we require (1) large modulation amplitude
so that the higher-order parametric resonances collapse to
form a large chaotic area, and (2) the initial position of
the tiny bunch inside part of this chaotic region. Since the
bunchisinitially located at the phase-space center, we must
offset the relative phase of the two-rf system so that the
potential-well bottom is shifted away from the phase-space
center. The maximum well-bottom offset and the corre-
sponding rel ative phase difference between the two rf's are

computed.
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