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Abstract

Inhomogeneous cold beams undergo wave breaking as
they move along the axis of a magnetic focusing sys-
tem; the largest the inhomogeneity, the soonest the break-
ing. The present analysis however reveals that the wave
breaking time is very susceptible to beam mismatch. It is
shown that judiciously chosen mismatches can largely ex-
tend beam lifetimes. The work includes some recently dis-
cussed issues: the presences of fast and slow regimes of
wave breaking, and the role of thermal velocity distribu-
tions in space-charge dominated beams. In all instances,
the theory is shown to be accurate against simulations.

INTRODUCTION

It is well known that magnetically focused beams of
charged particles can relax from non-stationary into sta-
tionary flows with the associated particle evaporation [1].
This is the case for homogeneous beams with initially mis-
matched envelopes flowing along the magnetic symmetry
axis of the focusing system. Gluckstern [2] showed that
initial oscillations of mismatched beams induce formation
of large scale resonant islands [3] beyond the beam border:
beam particles are captured by the resonant islands result-
ing in emittance growth and relaxation. A closely related
question concerns the mechanism of beam relaxation and
the associated emittance growth when the beam is not ho-
mogeneous. On general grounds of energy conservation
one again concludes that beam relaxation takes place as
the coherent fluctuations of beam inhomogeneities are con-
verted into microscopic kinetic and field energies [4]. Re-
cent works actually show that in the case of cold beams
relaxation proceeds in two basic steps. Firstly, wave break-
ing itself pushes particles off the beam. Secondly, ejected
particles are heated up as they absorb energy from macro-
scopic coherent oscillations of the remaining beam core.
Wave breaking is therefore the key feature in the relaxation
of cold inhomogeneous beams since it produces those par-
ticles that will later form the relaxing beam halo.

Two instances leading to wave breaking in inhomoge-
neous beams have been identified. Originally, a thresh-
old was obtained in terms of gradients in the amplitude of
waves propagating across the beam [5, 6]. While below the
threshold breaking is absent, above the threshold it is fast.
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As particles largely displaced from their equilibrium posi-
tions are released, they overtake each other in less than one
plasma wave cycle. Density singularities and wave break-
ing are thus created, and particles are pushed off the beam.
A more thorough analysis however shows that not only am-
plitude gradients, but also the formerly neglected gradients
of the spatially varying frequency of the density waves is
a key factor determining wave breaking [7, 8]. The phys-
ical process is different from the previous, as one shows
that no threshold exists in this latter case. Particles slowly
move out of phase due to small differences in their oscil-
latory frequencies, until a time when one eventually over-
takes another. At that instant the infinite density peak is
again formed generating the breaking.

In all the previous discussion, no particular attention is
directed toward beam size; the basic interest was the role of
beam non uniformity on wave breaking. One should note,
however, that since wave breaking is essentially dictated by
compressions and rarefactions of beam densities, it may be
quite possible that expansions or contractions of the beam
transversal size has a noticeable effect on the process. In
particular we will show that, contrarily to the homogeneous
beam case where envelope mismatch is an undesirable fea-
ture, for inhomogeneous beams it may largely delay wave
breaking, extending beam lifetime. Analytical treatment
can be made if one considers crystalline cold beams which
have been attracting a growing amount of interest lately [9].
We shall therefore expose our case with aid of this type of
system, introducing moderate temperatures later to study
warmer, but space-charge dominated beams.

BEAM PROFILE AND WAVE BREAKING

Consider an axially symmetric, collisionless, unbunched
beam moving with constant velocity along z. Ignoring
longitudinal smoother gradients, one obtains the relevant
fields with help of Gauss’s law as one considers the larger
transversal gradients. The equation for the radial motion of
any cylindrical layer of the beam thus takes the form [8]

r′′ = −κ r +
Q(r)

r
, (1)

primes indicating derivatives with respect to z for station-
ary beams. Q(r) is a measure of the total charge up to the
present radial layer position. It reads Q(r) = KN(r)/Nt,
where K = Ntq

2/γ3mβ2c2 is the beam perveance, with
N(r) denotintg the number of particles up to radial coordi-
nate r, and Nt their total number. q and m denote the beam

Proceedings of HB2010, Morschach, Switzerland THO1B03

Beam Dynamics in High-Intensity Linacs 585



particle charge and mass, respectively. γ = (1 − β2)−1/2

is the relativistic factor where β = vz/c, vz is the con-
stant axial beam velocity, and c is the speed of light.
κ ≡ (qB/2γmβc2)2 where B is the constant axial focus-
ing magnetic field.

We suppose that the beam starts off from rest as a cold
fluid. Then, while particles do not overtake each other,
Q(r, z) may be evaluated for any layer located at radial po-
sition r as the initial value Q(r0), where r(z = 0) ≡ r0. In
a likewise fashion, one can compute the amount of charge
contained between two neighbor layers located at r and
r + dr in the form

dQ = 2πrρ(r, z)dr = 2πr0ρ(r0, 0)dr0, (2)

where ρ denotes the particle density of the system. The
expression for dQ tells us that the density evolves as

ρ(r, z) = ρ(r0, 0)
(r0
r

)(
∂r

∂r0

)−1

. (3)

Beams with perfectly matched envelopes are the ones for
which the initially farthest radial layer rb0 is in equilibrium:
r2b0 = K/κ from Eq. (1). Eq. (3) reveals that the density
function develops a singularity when the orbital equation
r = r(r0, z) becomes multivalued with ∂r/∂r0 = 0. This
point corresponds to a potential barrier not all particles can
move across. Some particles do move through the barrier,
but some are reflected relaxing the beam via kinetic effects
associated with emittance growth. So, it all depends on the
behavior of the compressibility factor ∂r/∂r0 as a function
of “time” z. An approximate solution for small oscillations
can be obtained from Eq. (1) in the fluid state where Q(r)
can be replaced with Q(r0) as explained earlier:

r(z) ≈ req +A cos(ωz). (4)

The solution describes an oscillatory motion of amplitude
A ≡ r0 − req around an equilibrium point req promptly
recognized as req =

√
Q(r0)/κ from Eq. (1). The am-

plitude depends on r0, and the nonlinearly corrected fre-
quency also does: canonical perturbative theories show that
[8, 10]

ω(r0) =
√
2 κ+

√
κ

6
√
2

(
A

req

)2

. (5)

Therefore, if from Eq. (4) one writes down the compress-
ibility factor one arrives at

∂r

∂r0
=

∂req
∂r0

+
∂A

∂r0
cos(ωz)− z

∂ω

∂r0
A sin(ωz). (6)

If the amplitude inhomogeneity is sufficiently large that
∂A/∂r0 > ∂req/∂r0, wave breaking takes place within
a cycle of oscillation as the cosine’s phase slips from zero
towards π. In this case the last term on the right hand side
of Eq. (4) can be safely neglected as a small O(A2/r2eq)
quantity. The threshold condition for fast wave breaking

dominated by the amplitude gradient can also be written in
the convenient form

√
Q >

∂Q

∂r0
. (7)

In typical configurations of beams with humped cores and
dilute populations near the border, ∂Q/∂r0 → 0 and the
condition for wave breaking is easily satisfied there. This
is the fast regime analyzed in Refs. [5, 6], as mentioned
earlier. In addition to this fast regime, another clear fast
regime is found as one considers hollow beams, where den-
sities are extremely high near the beam border, and small
at the center. In this case, in contrast with the previous,
∂Q/∂r0 is large near the border and the threshold condi-
tion is unlikely to be fulfilled there. On the other hand,
near the beam center where Q ∼ ρr2 for a local density ρ,
the condition is automatically satisfied for vanishing small
densities. In general, beams may display fast wave break-
ing wherever the density is so small that the charge accre-
tion satisfies ∂Q/∂r0 → 0.

When the threshold for the fast wave breaking is not at-
tained, a simple oscillatory process cannot bring the com-
pressibility factor to the state ∂r/∂r0 = 0. This is where
the last term of Eq. (6) begins to play its crucial role. Cor-
rections to the frequency are small, as mentioned, but the
respective term present in Eq. (6) grows linearly with the
time z. Thus, no matter how small is the inhomogene-
ity, for sufficiently long periods of time the term involv-
ing the frequency derivative will become large enough that
∂req/∂r0 ∼ z∗A∂ω/∂r0 for a given z∗ = z∗(r0). Ne-
glecting the nonsecular term, at this point the wave break-
ing singularity ∂r/∂r0 = 0 will be reached again. The
earliest breaking time is the one of physical relevance. It
is obtained here as the minimum of z∗(r0) over all r0’s in
the form zwb ≡ minr0{z∗(r0)}, from which convenient
approximations shall be discussed later.

Therefore: (i) Starting from humped core beams with
very low densities at the borders, wave breaking is fast and
occurs at the beam border. This is the case studied in pre-
vious papers where the frequency term was neglected. (ii)
Next, as one diminishes the density contrast between beam
core and beam border, one enters a slow regime where
the rapidly oscillating compressibility factor modulates lin-
early with z, reaching the wave breaking state ∂r/∂r0 = 0
after long time periods. This is the case investigated in
Ref. [8] where the amplitude term was in turn neglected.
We note that in contrast to the fast regime, the slow regime
of wave breaking does not involve any threshold. As long
as beam inhomogeneities are present, the beam is bound to
undergo wave breaking. (iii) Finally, with further increase
of the density contrast, now with higher densities near the
border, a new zone of fast wave breaking is reached where
breaking occurs near the beam center.

CONTROLLING WAVE BREAKING

We now add the effect of a mismatched beam border
to an inhomogeneous profile [11]. As argued before, we
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Figure 1: Wave breaking time versus initial beam radius in
panel (a). z∗ = z∗(r0) for rb0 = 0.8 in panel (b) and for
rb0 = 0.9 in panel (c). Beam phase-spaces just after the
breaking: rb0 = 0.8 in panel (d) and rb0 = 0.9 in panel
(e). In all cases, χ = 0.6. All radiuses given in units of√
K/κ and z in units of κ−1/2; v ≡ r′. Simulations based

on Gauss’s law using 50000 cylindrical shells.

expect that a beam with varying size may have a signifi-
cant influence on its inner density distribution and, conse-
quently, on the compressibility factor. We shall investigate
the effect in slow regimes, since within the fast regimes
a rescaling of beam size has no significant effect on the
breaking time. We now need to specify the beam profile
we will be working with. It is taken in the general parabolic
form

ρ(r0) =
2K

πr2b0

[
1 + χ

(
2r20
r2b0

− 1

)]
, (8)

for r0 ≤ rb0 where rb0 is the initial beam size and −1 ≤
χ ≤ +1 measures the degree of inhomogeneity; χ → −1
for humped and χ → +1 for hollow beams. We eval-
uate the charge as Q(r0) =

∫ r0
0 2πrρ(r)dr and use the

result to see that the slow region lies within the borders
χmin = −0.5 and χmax = 0.75 for the matched beam
rb0 =

√
K/κ. With that information, to be corroborated

later, we construct Fig. 1(a) using χ = 0.6, where the ear-

liest wave breaking time zwb is displayed as a function of
beam size. In all forthcoming numerical discussions ra-
dial coordinates will be given in units of

√
K/κ and z in

units of κ−1/2. Note that because of our choice of the in-
homogeneity χ = 0.6, we do fall in a slow region, at least
in the vicinity of the matched beam. The thick line is ob-
tained exactly as one integrates Eq. (1) and its derivative
with respect to r0, all in the fluid state where we can re-
place Q(r) → Q(r0). The thin lines, whose origins will
be discussed shortly, are based on the perturbative solution
Eq. (6) and approximate the exact curve on the right and
left sides of the peak. In addition to the peak the plot re-
veals strong sensitivity to the choice of rb0. We note that
the matched beam is not the one with the largest lifetime
before breaking. The longest living beam is the one at the
peak where rb0 ≈ 0.85, and its breaking time is around
five times larger than the matched beam’s time. The rea-
son for the sharp peak can be understood in panels (b) and
(c) where we plot the local wave breaking time z∗(r0) as
a function of the initial position of the corresponding fluid
element; as mentioned earlier, the earliest (smallest) break-
ing time is the one of physical significance. Panel (b) rep-
resents one point rb0 = 0.8 on the left side of the peak. For
this point and all others on the left side the earliest break-
ing occurs at the beam border (B). Panel (c) represents
the point rb0 = 0.9 on the right side of the peak of panel
(a), and reveals that the earliest breaking time for this point
(and all others on the right side) occurs in the inner (I)
body of the beam. The curves for rb0 < 1 always reveal
two local minima separated by a divergent z∗. The diver-
gent point corresponds to a fixed equilibrium point located
inside the beam; that portion of the beam extending up to
the fixed point behaves like a matched beam of smaller ra-
dius than the whole. This helps to obtain the wave breaking
time zIwb in the inner region (rhs approximation) as one can
use minimizing procedures applied to fully matched beams
[8]:

zIwb =

(
3

2κ

)1/2 α3
(
4
√
1− χ′ + χ′ − 1

)
(√

3− α
)2 (√

1− χ′ + χ′ − 1
) , (9)

where α ≡ (1 + 2
√
1− χ′ − χ′)1/2 and χ′ = 1 + (χ −

1)K/κr2b0 is a renormalized inhomogeneity factor. As for
the wave breaking time at the beam border zBwb (lhs approx-
imation) one simply evaluates zBwb = z∗ (r0 = rb0):

zBwb = 3
√
2(χ+ 1)

[
rb0

√
κ/K(rb0

√
κ/K − 1)2χ

]−1

.

(10)
There is thus an abrupt transition between these two

regimes precisely at the peak, where the beam simulta-
neously breaks at the center and at the border: rb0 at the
peak is obtained from zIwb = zBwb. We also perform full N -
particle simulations based on Gauss’s law [12] using 50000
cylindrical shells. The simulation results shown in panels
(d) (rb0 = 0.8) and (e) (rb0 = 0.9) of Fig. 1, confirm the
abrupt transition. When χ < 0 the behavior is reversed, but
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Figure 2: Wave breaking time map in the χ × rb0-space.
Colors are related with magnitude of the wave breaking
time. Doted line comes from the analytical approach, and
indicate the loci of maximum wave breaking time. Black
means zwb > 105.

otherwise equivalent, with the internal fixed point appear-
ing when the beam is stretched with rb0 > 1.

We now investigate the roles of size and profile in a uni-
fied way. To do so we construct Fig. 2 where the earliest
breaking time is coded in colors, as a function of the control
parameters rb0 and χ. The plot covers a wide range along
the horizontal axis and covers the fullχ range−1 < χ < 1,
enabling the see the fast wave breaking regions and all de-
tails of the slow region. The bent dotted line represents the
loci of the largest wave breaking time. What was suggested
in Fig. 1 is fully confirmed here: wave breaking strongly
depends not only on the beam profile χ, but also on the
beam size rb0; see expression for χ′. And more: Fig. 1(a)
teaches how a judicious mismatching applied to rb0 may
help to control the deleterious effects of non uniformities
across the beam section. Even the borders of the fast re-
gions respond to the mismatch: if for a given χ one is not
too deep into the fast regions, a shift in rb0 can bring the
system into the slower region of wave breaking. Note that
previous estimates for the matched beam zoning are accu-
rate.

THERMAL BEAMS

The relevance of crystalline beams has been reported in
a series of recent works [9, 8], but one might wonder how
the theory applies to space-charge dominated, but warmer
beams [13]. Is it still possible to control the extent of the
fluid-like state prior to relaxation with help of convenient
mismatches applied to the beam envelope size? To answer
the question the reader is referred to Fig. 3 where we ana-
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Figure 3: Relaxing emittance for various rb0’s, all cases
with a small initial velocity spreadΔv = 1.6×10−2 around
v = 0; velocity in units of

√
K .

lyze the issue. In all cases we start with particles spatially
distributed according to the parabolic ρ(r0, χ), but with
a small and uniform normalized velocity spread of width
Δv = 0.016 around the axis v = 0. Emittance growth is
used as a tool to measure thermal effects and beam relax-
ation. Emittance ε is evaluated as the average, <>, over all
beam particles: ε = 2

√
< r2 >< v2 > − < rv >2.

Particles are ejected from the cold core providing a nu-
merous population that can be accelerated by the remain-
ing oscillating core to create a diffuse halo. As the halo
is established, coherent beam oscillations relax and beam
emittance saturates. Emittance initially oscillates while the
beam behaves mostly as a regular fluid; emittance compen-
sating techniques can be applied here to reduce the effects
of oscillations on beam quality [14]. Relaxation is attained
later when the emittance evolves to the flat line, thermal
regime of the figure. rb0 for curves (a) and (c) are sym-
metrically located around the peak rb0 ≈ 0.85 of Fig. 1(a),
both corresponding to the same zwb. Fig. 3 reveals that
their relaxation times are similar and smaller than curve
(b) where we represent the point associated with the peak
rb0 ≈ 0.85. The trend associated with the role of mis-
match thus remains the same as observed in the cold wave
breaking calculations: one can considerably postpone the
thermal regime with an adequate choice of the initial beam
size.

CONCLUSION

To conclude, we find two types of wave breaking situa-
tions in space charge inhomogeneous beams: a fast break-
ing commanded by amplitude gradients of density waves
across the beam, and in its absence, a slow breaking com-
manded by frequency gradients. The latter has no thresh-
old and is bound to happen no matter how small is the
beam non uniformity. Then, in all instances, we showed
how a judiciously chosen envelope size mismatch can sig-
nificantly extend the beam life time as compared with the
traditional perfectly matched case. Finally, small thermal
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effects were considered, to show that even warmer beams
can still be well controlled with envelope mismatches. The
present investigation is concerned with control of irre-
versible growth of thermal emittance in beams displaying
non laminar transverse motion. Our results show that con-
venient envelope mismatches provide a desirable degree of
control.
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