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Abstract
Dark current and multipacting phenomena, as observed

in accelerator structures, are usually harmful to the equip-

ment and the beam quality. These effects need to be sup-

pressed to guarantee stable operation. Large scale simula-

tions can be used to understand the cause and develop so-

lutions for these phenomena. We extend OPAL [1], a par-

allel framework for charged particle optics in accelerator

structures and beam lines, with the necessary physics mod-

els to simulate multipacting phenomena. This is achieved

by adding a Fowler-Nordheim field emission model and

a secondary emission model, as well as 3D boundary ge-

ometry handling capabilities to OPAL. With these capa-

bilities we can evaluate dark current and multipacting in

high-gradient linac structures and in RF cavities of high

intensity Cyclotrons. In state of the art accelerator struc-

tures the electric fields are strong, therefor space charge ef-

fects in the Fowler-Nordheim model cannot be neglect. In a

first step we add the Child-Langmuir model to phenomeno-

logically model space a charge limited field emission. In

the near future a multigrid preconditioned iterative space

charge solver capable of handling complicated boundary

geometries will be used to make our field emission model

more self-consistent.

INTRODUCTION
Dark current and multipacting phenomena have been ob-

served in various RF structures of accelerators, e.g. [2] [3].

These phenomena are usually harmful to the equipment

and beam quality, as they will cause galvanic etching on

the surface of the cavity and thus cause RF breakdown.

In this paper we will discuss our efforts to extend OPAL

in order to get a feasible tool for performing large scale

dark current and multipacting simulations. This would al-

low more thorough analysis and a deeper understanding

of these phenomena. Accurate simulations could lead to

methods how these situations can be prevented or dimin-

ished. To achieve these goals, first we introduce a particle-

boundary collision test model into OPAL to facilitate the

particle searching during tracking process. In a subsequent

step we add surface physics models including an analytic

Fowler-Nordheim field emission model and a phenomeno-

logical secondary emission model to OPAL.

The Child-Langmuir space charge model for emitted

electrons is discussed here. A multigrid preconditioned it-

erative space charge solver able to treat complicated bound-

aries with higher accuracy is still work in progress and will

be incorporated in the near future.
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Figure 1: Line segment-triangle intersection.

A code benchmark of the implemented secondary emis-

sion model and visualization results are given in the last

section of the paper.

PARTICLE-BOUNDARY COLLISION
TEST MODEL IN OPAL

Testing particle-boundary collisions is crucial to both

dark current and multipacting simulations. We need an effi-

cient way to distinguish between dark current particles po-

tentially reaching the beam diagnostic equipment (e.g. a

screen) and those hitting the surface of beam line elements

causing multiplication.

The particle-boundary collision test in a 3D geometry is

complicated and computational expensive. Our complex

3D geometries are hard to parameterized by simple func-

tions. Instead we represent geometries as triangulated sur-

face meshes. Subsequently we can make use of efficient

3D line segment-triangle intersection (LSTI) tests to find

particle-boundary collisions. In the following we will de-

scribe how we implemented this collision tests while still

retaining code efficiency.

The Line Segment-Triangle Intersection (LSTI)
Test

An efficient LSTI test algorithm is described in [4].

Since we need to precompute all triangle normals for tri-

angle orientation anyway we can make use of a faster al-

gorithm relaying on having triangle normals available [5].

In order to compute a LSTI we need the starting and end

point of the line segment under consideration, triangle ver-

tices and normal. A schematic view is sketched in Figure

1. Vectors are denoted with arrows (i.e. �n), points (here

in R3) are bold (i.e. x0) and the remaining symbols de-
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note scalars. The algorithm for handling LSTI is given in

Algorithm 1.

Algorithm 1 LSTI

1: procedure LSTI(In: x0, x1, Δ(t0, t1, t2), Out: isIn-

side, I)
2: if �n · (x1 − x0) = 0 then
3: return false {x1 − x0 || Δ → no intersection}
4: else
5: ri ← �n·(t0−x0)

�n·(x1−x0)

6: I ← x0+ri(x1−x0) {The intersection point of the

line segment and planed}
7: if ri<0 or ri > 1 then
8: return false {early rejection: intersection is on

the extension of line segment}
9: else

10: {Check if the intersection point is inside the tri-

angle}
11: Solve: �w = t0 + si�u + ti�v {parametric plane

equation}
12: si ← (�u·�v)(�w·�v)−(�v·�v)(�w·�u)

(�u·�v)2−(�u·�u)(�v·�v)
13: ti ← (�u·�v)(�w·�u)−(�u·�u)(�w·�v)

(�u·�v)2−(�u·�u)(�v·�v)
14: if si ≥ 0 and ti ≥ 0 and si + ti ≤ 1 then
15: return (true, I)
16: else
17: return false {no intersection between line seg-

ment and triangle}
18: end if
19: end if
20: end if
21: end procedure

Early Rejection Strategy

Even though the implemented LSTI algorithm using pre-

computed triangle normal is fast a huge number of LSTI

calls are necessary. If we have M triangles and N parti-

cles in the simulation, both in the magnitude of hundreds

of thousand to millions, the number of LSTI tests in sin-

gle time step without a early rejection strategy would be

M ×N , i.e., at least 1010 per time step. Obviously, effec-

tive early rejection strategies (see Figure 2) are needed to

reduce the number of LSTI tests.

�n

�n

Figure 2: Schematic view of particle-boundary early rejec-

tion strategy. The dark black line represents the bound-

ary surface, particles are colored dots with an attached mo-

menta arrow and inward normals gray arrows.

Assuming we need to determine whether a particle with

position r and momenta p hits the boundary within time

step Δt we apply the following early rejection strategies:

• Test if the particle is near the boundary by checking

if r is inside the boundary bounding boxes (illustrated

by gray grids in Figure 2).

• If r is not in a bounding box (green particle in Figure

2), the particle is enough far away from boundary and

can be integrated directly.

• If r is in a bounding box (yellow particle and red par-

ticle in Figure 2), then we check all triangles in the

bounding box (of the corresponding particle) as well

as triangles in the adjacent 26 bounding boxes to see

if the momenta of the particle has a opposite direction

with those triangles’ normals.

• If the momenta and triangle normal are not opposite

for all triangles checked (the yellow particle) do parti-

cle integration.

• If they are opposite (red particle) check if the particle

has an intersection with the triangles by performing

the LSTI test for each triangle. If an intersection exists

the particle will hit the boundary during the current

time step.

Two things need to be pointed out. First we get the in-

ward normal in the following way. We find a point close

to a triangle with specified ID (e.g. 0) and determine if the

point is inside or outside the boundary geometry. This can

be achieved by doing a ray-boundary intersection test and

counting the number of intersections. Using this point we

can get the orientation (inward normal) of the triangle with

ID 0. Now we can get the inward normal of all surface

triangles by recursively aligning the orientation of adjacent
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triangles of triangles whose inward normals have already

been computed.

Secondly the success of the above particle-boundary col-

lision test relies on the fact that the distance a particles

travel in one time step cannot be larger than the bound-

ing box size. Choosing an appropriated bounding box size

ensures that a particle will never jump over a bounding box

in one time step.

SURFACE PHYSICS MODELS

Field Emission Model
Field emission is a major source of both dark current

particles and primary incident particles in secondary emis-

sion. The Fowler-Nordheim (F-N) formula we use here to

predict the emitted current density is given in (1) [6] [7]

J(r, t) =
A(βE)2

ϕt(y)2
exp

(−Bv(y)ϕ3/2

βE

)[
A/m2

]
(1)

where J(r, t) stands for emitted electric current density in

position r and time t. The Greek letters ϕ and β denote

the work function of the surface material and the local field

enhancement factor respectively. The parameter E is the

electric field in the normal direction of surface. The pa-

rameters A and B are empirical constants. The functions

v(y) and t(y) representing the image charge effects [6] as

a function of the Fowler-Nordheim parameter y with the

following definition [2]

y =

√
e3

4πε

√
βE

ϕ
= 3.795× 10−5

√
βE

ϕ
. (2)

In our model, we have choosen a simpler approximation

originated by J. H. Han [2]

v(y) = a− by2

t(y) ≈ 1.

These approximations are valid for a large range of y, cor-

responding to typical applied electric field ranges in RF

guns.

Users can customize dark current simulation by specify-

ing the value of the work function ϕ, local field enhance-

ment factor β and other parameters present in (1) and (2)

in the OPAL input file.

Space Charge Limited Current Density
Whenever the normal components of an electric field are

strong enough the field emission current density will be

limited by space charge effect [6]. To cover this situation

we incorporated the 1D Child-Langmuir law

J(r, t) =
4ε0
9

√
2
e

m

(
V 3/2

d2

)

=
4ε0
9

√
2
e

m

(
E3/2

d1/2

)[
A/m2

]
(3)

into our field emission model. J(r, t) denotes space charge

limited emission current density in position r and time t,
ε0 the permittivity in vacuum, E the normal component

of electric field on the surface and d the distance from the

position where E is evaluated. Currently we choose d to be

equal to the distance travelled by emitted particles in one

time step, i.e., d = eEΔt2

2m0
where Δt is simulation time

step.

A multigrid preconditioned iterative space charge solver

developed by Adelmann et al. [8] has already been imple-

mented in OPAL. We are in the process of adapting the

solver to be able to cope with the geometric boundaries

present in our simulations.

Secondary Emission Model
Our implementation of the secondary emission model is

based on a phenomenological model developed by M. A.

Furman and M. Pivi [9]. This choice was based on the

self-consistency property this particular secondary model

offers. In this context self-consistency means that if we

define one incident electron and the followed secondary

emission procedure as an event, the event generator is con-

structed so that

1. when averaging over an infinite number of secondary-

emission events, the reconstructed secondary emis-

sion yield δ and its energy spectrum dδ/dE are guar-

anteed to agree with the corresponding input quanti-

ties

2. the energy integral of dδ/dE is guaranteed to equal δ

3. the energy of any given emitted electron is guaranteed

not to exceed the primary energy

4. the aggregated energy of the electrons emitted in any

multi-electron event is also guaranteed not to exceed

the primary energy.

This model calculates the number of secondary electrons

that result from an incident electron of a given energy on

a material at a given angle (see Figure 3). For each of the

generated secondary electrons the associated process: true
secondary, rediffused or backscattered is recorded.

The basic computational procedure of the secondary

emission model is shown in Figure 4.

Surface normal �n

Incident electron Backscattered electron

Rediffused electron
True secondaries

θ

Figure 3: Geometry used by the secondary electrons model.
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Incident E0, θ0

Compute

δe(E0, θ0),
δr(E0, θ0),
δts(E0, θ0)

Compute Pn, n =
0, 1, ...,M

Random integer n
with probability

distribution {Pn}

n = 0?
Delete the

incident electron

n = 1?

Emitted energy

E ∈ [0, E0] with

PDF

f1,e + f1,r + f1,ts

Emitted energy

Ek ∈ [0, E0],
k = 1, ..., n with

PDF fn,ts

Generate

θk ∈ [0, π/2],
with PDF cosα;

and φk ∈ [0, 2π],
k = 1, ..., n. Calc

momenta

accordingly.

yes

no

yes

no

Next event

Next event

Figure 4: Basic computational procedure of secondary

emission model.

CODE BENCHMARK AND RESULT
VISUALIZATION

Code Benchmark on Secondary Emission Model

In order to validate the secondary model implemented in

OPAL, we conducted a code to code comparison with the

TxPhysics library [10]. The simulation parameters were

fixed to a large number of incident events (10000) with the

same energy (300eV) and the same incident angle (normal

to the surface). Figure 5 shows the result of the comparison

between OPAL and TxPhysics. We note that the statistical

agreement is very good.
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Figure 5: Secondary energy comparison between OPAL

and TxPhysics.

Result Visualization
For visualization purposes the boundary geometry is

stored into a VTK legacy file. Phase space data of all par-

ticles is dumped into a H5Part [11]. With a separate post

processing code the H5Part particle data is converted to a

VTK legacy file At this point the VTK files can be visual-

ized by tools like . Paraview [12] . A sample visualization

of a dark current simulation result is shown in Figure 6.

Figure 6: Simulation visualization. Dark current (green)

and bunch (red) particles inside PSI XFEL gun.
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