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Abstract 
Evidence of hardware damage in the Spallation 

Neutron Source ring suggests that a non-negligible 
fraction of the foil stripped electrons are reflected back 
into the vacuum chamber. This paper summarizes the 
results of a 3D computational study that explores the 
dynamics of the foil-stripped, uncaught electrons. 

INTRODUCTION 
In high beam power accelerators which utilize H- 

charge exchange injection, the stripped electron beam 
must be carefully controlled to minimize the probability 
of electrons intercepting local hardware. In the 1 GeV, 1.4 
MW Spallation neutron source ring [1], an electron 
catcher was installed for this purpose. The catcher was 
designed to catch the stripped electrons with very high 
efficiency [2]. However, due to relocations of the injected 
beam spot after the start of beam operations, as well as 
improper positioning of the catcher itself inside the 
chamber, the catcher is unlikely to have ever achieved the 
design efficiency. Multiple observations of hardware 
damage in the injection region suggest that a non-
negligible fraction of the electrons are being reflected 
back into the chamber where they pose a significant threat 
to the local hardware. 

This project was initiated to explore the dynamics of 
uncaught electrons in the SNS injection region. Only 
electrons which strike the top surface of the catcher are 
considered, e.g. those which constitute “catcher in-
efficiency”. The computational model employed includes 
electron tracking in the 3D field of the magnet, a surface 
interaction model for the electrons intercepting the 
catcher surface, and absorbing apertures to map out the 
final impact distribution of electrons.  

The SNS injection configuration has evolved over 
time [3]. Two specific operational configurations were 
simulated in detail in this study, and results were 
compared with experimental observations. This paper 
presents only a brief overview the project. A full 
description can be found in reference [4].  

 
 
 
 
 

  

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 for the U.S. Department of Energy. 

 
 

EVIDENCE OF REFLECTED 
ELECTRONS 

Three experimental observations indicate the presence 
of uncaught, reflected electrons in the SNS injection 
region. First, black marks have been observed on the top 
surface of the catcher surface. In the design electron 
catcher scheme, electrons should intercept the underside 
of one of five undercut wedges. The fact that there are 
black marks on the top surface of the catcher indicates 
that a substantial fraction of the electrons either are not 
now, or were not at some point during operations, being 
properly caught.  

Second, a ring-shaped black mark has been observed on 
the top of the vacuum chamber above the stripper foil 
mechanism. This mark is thought to be caused by 
reflected electrons impacting the top of the beam pipe. 

Third and last, melted metal was observed on the 
bracket and arm of a 3rd generation foil assembly [3]. The 
suspected cause was reflected electrons, and 
modifications were made to the geometry and material of 
the next generation assembly to alleviate the problem.  

ORBIT 3D COMPUTATIONAL MODEL 
The ORBIT code is a PIC-style, open-source code 
developed for simulating high intensity beams [5]. The 
code contains a module for particle tracking in a 3D 
magnetic field. This feature was combined with a with 
Monte-Carlo style surface interaction model to simulate 
the stripped electrons in the SNS injection chamber. The 
surface model is based on scattering probability 
distributions generated by MCNPX for 545 keV electrons 
impinging on carbon at various incident angles. Only one 
scattering event is allowed for each electron, and for 
typical SNS electron incident angles, the MCNPX results 
indicate that the probability of absorption vs. reflection at 
the catcher surface is 60/40, respectively. Furthermore, 
the scattering is primarily elastic and within the plane of 
incidence, and the in-plane scattering angle is peaked near 
mirror-reflection.  

Finally, hardware in the injection region, such as the 
top of the vacuum chamber and the foil assembly, were 
modelled as absorbing apertures.  
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Table 1 also shows that 13% of uncaught electrons are 

predicted to intercept the foil assembly. This number is a 
few percent higher for the 3rd generation assembly which 
was observed with bracket and arm damage upon removal 
from beam.  

An important goal of this work was to either validate or 
refute the hypothesis that foil-stripped electrons are 
intercepting local hardware after reflection on the catcher 
surface. Each of the 3 major impact spots seen in Figure 2 
can be tied to one of the experimental observations. First, 
the dense spot on the bottom aperture is observed in the 
machine as black marks on the top plates of the catcher; 
multiple black marks in the real machine are likely due to 
injected beam spot repositioning. Second, the impact spot 
on the top aperture can be linked with the black mark 
observed at the top of the vacuum chamber; the locations 
agree to within the error of the known position of the 
black mark. Third, simulations of the 3rd generation 
assembly, not presented here (see ref [3]), show a high 
density of electron loss in the locations where the damage 
occurred. 

In conclusion, the simulations support the hypothesis 
that uncaught electrons in the SNS ring injection are 
intercepting local hardware. Though the fraction of total 
uncaught electrons is unknown, for the SNS 1 MW beam 
even a small fraction would constitute significant power 
deposition on the hardware. The hazard becomes more 
serious for future high power machines which will 
produce tens of MW of beam power. As in the SNS case, 
it is not uncommon for the injection configuration to be 
tweaked away from design after operations begin. 
Electron catching schemes will need to be robust against 
such changes.  
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