MOPD34

Proceedings of HB2010, Morschach, Switzerland

RELAXATION, EMITTANCE GROWTH, AND HALO FORMATION IN
THE TRANSPORT OF INITIALLY MISMATCHED BEAM S

T. N. Teles, R. Pakter', Y. Levin
Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Brazil

Abstract

In this paper, a simplified theoretical model that allows to
predict the final stationary state attained by an initially mis-
matched beam is presented. The proposed stationary state
has a core-halo distribution. Based on the incompressibility
of the Vlasov phase-space dynamics, the core behaves as a
completely degenerate Fermi gas, where the particles oc-
cupy the lowest possible energy states accessible to them.
On the other hand, the halo is given by a tenuous uniform
distribution that extends up to a maximum energy deter-
mined by the core-particle resonance. This leads to a self-
consistent model in which the beam density and self-fields
can be determined analytically. The theory allows to es-
timate the emittance growth and the fraction of particles
that evaporate to the halo in the relaxation process. Self-
consistent N-particle simulations results are also presented
and are used to verify the theory.

INTRODUCTION

In experiments that require the transport of intense
beams, space charge forces make it virtually impossible to
launch a beam with a distribution that corresponds to an
exact equilibrium state. As a consequence, as the parti-
cles are transported the beam will tend to relax towards a
stationary state [1, 2]. Along this process, effects such as
emittance growth and halo formation are expected to oc-
cur. These effects are very detrimental because they limit
beam efficiency and may be responsible for particle losses
which can cause wall damage and activation. Therefore, a
quantification of the amount of emittance growth and halo
formation that can be expected becomes an important issue
in the design of such systems. In order to estimate these, a
good knowledge of the mechanisms that lead to beam re-
laxation and, especially, of the final stationary state reached
by the beam is necessary.

In general, injected beams may deviate from the equi-
librium state because of various effects, such as enve-
lope mismatches [3, 4, 5, 6, 7, 8, 9], off-axis motion
[10, 11, 12, 8, 13], nonuniformities in the beam distribu-
tion [14, 15, 16, 17, 18, 19, 20], and forces due to the sur-
rounding conductors [21, 22, 23]. Among all these effects,
the one that has attracted most of attention is the envelope
mismatch because it is believed to be a major cause of emit-
tance growth and halo formation. For mismatched beams,
an unbalance between the focusing force due to the external
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applied field and the defocusing forces due to space charge
and thermal effects, causes the whole beam to oscillate in
a coherent breathing mode. Some single beam particle tra-
jectories resonate with this mode, gaining a lot of energy
to form the halo. Based on a low dimensional particle-core
model it is possible to observe this resonance process and
to determine the maximum range of halo particles [3, 4, 5].
Due to conservation of energy, as the halo is being formed
the particles that remain in the core loose energy and the
amplitude of the breathing mode decreases. Eventually,
halo formation ceases and the stationary state is reached.
The whole scenario is analogous to an evaporative cooling
process where the core particles cool down via evaporation
of hot, energetic halo particles. The thermodynamic equi-
librium that corresponds to the Maxwell-Boltzmann distri-
bution [24, 25] is not expected to be attained in this process
because the beam dynamics is collisionless [26, 27, 28, 29].
In fact, in the particular case of an initially mismatched
high-intensity cold beam, it has been shown that the final
stationary state can be very well modeled by a completely
cold dense core surrounded by a cloud of energetic par-
ticles that carry all the beam emittance [8, 9]. From this
model one can successfully determine the total emittance
growth and the fraction of particles that form the halo in
the stationary state.

In the case of beams with a finite initial emittance, how-
ever, the assumption of a completely cold core for the re-
laxed state is no longer correct. The existence of emittance
in the initial distribution indicates that the beam occupies a
finite volume in the phase-space. Because the Vlasov dy-
namics that governs beam evolution is incompressible, this
volume has to be preserved. Hence, the occupation of low-
energy regions of the phase-space by the particles as the
core progressively cools down is limited by the finite den-
sity of the initial distribution in phase-space, which is is not
compatible with a completely cold core. In other words,
although we are dealing with purely classical particles, the
conservation of volume in the phase space imposed by the
Vlasov equation, leads to a Pauli-like exclusion principle
for the beam particles. Taking this into account, here we
propose that the stationary state for the core corresponds to
a completely degenerate Fermi gas, where the particles oc-
cupy the lowest possible energy states accessible to them.
This leads to a self-contained model where the beam den-
sity and self-fields can be determined analytically as a func-
tion of two parameters — the core size and the halo density.
This parameters are, in turn, readily obtained by numer-
ically solving two algebraic equations that correspond to
the conservation of the total number of particles and the
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energy of the system. The results are compared with self-
consistent N-particle simulations and a good agreement is
found for the density of the stationary state and the emit-
tance growth. In the simulations, the emittance growth is
shown to be weakly dependent on the details of the initial
beam distribution. The model is also used to estimate the
fraction of particles that will evaporate to form the halo. It
is worth noting that a more detailed analysis shows that the
core distribution is indeed not fully degenerate, but more
closely represented by a series of low temperature Fermi-
Dirac distributions [26, 30]. If on one hand such represen-
tation is capable of describing the stationary state in great
detail, on the other hand it demands more involved com-
putation and requires an equally detailed knowledge of the
initial distribution. In this regard, the model proposed here
is a simplification which, however, provides a fair descrip-
tion of the stationary state and that is only based on the
knowledge of RMS quantities of the initial distribution.

BEAM MODEL AND EQUATIONS

We consider an unbunched beam propagating with a con-
stant axial velocity Syc along the inner channel of a circu-
lar grounded conducting pipe of radius r,,; the beam is fo-
cused by a uniform solenoidal magnetic field of magnitude
B,. Both the pipe and the focusing field are aligned with
the z axis. Given the uniform motion along z, we define a
longitudinal coordinate s = [ct that plays the role of time
in the system. It is convenient to work in the Larmor frame
of reference [31], which rotates with respect to the labora-
tory frame with the angular velocity Q;, = ¢B,/2v,mec,
where ¢, m and v, = (1 — Bb2)*1/ 2 are, respectively, the
charge, mass and relativistic factor of the beam particles. In
the paraxial approximation, the beam distribution function
f(r,v,s) evolves according to the Vlasov-Maxwell system
(31]

%+V.vf+(_agr—w)-vvf=0, M
2y _ 2K
V2 = N n(r, s), ()

where n(r,s) = [ fdv is the beam density profile, oy =
qB. /27pB8ymc? is the vacuum phase advance per unit ax-
ial length which determines the focusing field strength,
K =2¢°N/ 'yg’ Bgmc2 is the beam perveance that is a mea-
sure of the beam intensity, N = f f drdv =const. is the
conserved number of particles per unit axial length, r is po-
sition vector in the transverse plane, and v = dr/ds. As
discussed in the Introduction, it is exactly because the beam
evolves according to the Vlasov Equation (1), that the to-
tal phase-space volume occupied by the particles has to be
conserved. In Egs. (1) and (2), v is a normalized potential
that incorporates both self-electric and self-magnetic field
interactions. Due to the presence of the pipe surrounding
the beam, the self-field potential satisfies the boundary con-
dition ¢ (r = ry) = 0. In view of the axisymmetry of the
external focusing field, we assume that the beam distribu-
tion has no 6 dependence, so that f = f(r, v,;vg; $), where
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the angular velocity vy is a constant of motion for the beam
particles. For the Vlasov dynamics, if the distribution func-
tion only depends on the phase-space variables through the
single particle energy, i.e., f(r,v) = f(e), where

e(r,v) = (v*/2) + (057 /2) + (1), 3)

it will be stationary. When that is not the case, the dis-
tribution will vary as function of s, tending to relax to a
stationary state.

The beam envelope 7, = [2(r2)]'/? is a measure of the
transverse size of the beam and evolve according to [31]

ry 4 ogry — (K/r) = (/r3) = 0, )
where the emittance of the beam is defined as
e =2[(r?) (v*) — (rv,)*]"/?, ©)

the prime denotes derivative with respect to s, the angled
brackets represent the average over the beam distribution,
and v = (v2 + v2)'/2. While for equilibrium beam dis-
tributions the emittance is a conserved quantity, for a non-
stationary beam the emittance ¢ = ¢(s) generally grows as
the beam relaxes towards the stationary state. It is clear
from Eq. (4) that there is a competition between the focus-
ing force imposed by the external magnetic field and the
defocusing forces due to space charge and emittance. For
matched beams these forces are balanced in such a way that
the beam envelope remains mostly constant along the trans-
port. Equating r; = 0 in Eq. (4) we obtain the matched
beam envelope

1/2
. K+ (K2 + 40’862)1/2
T, = 20(2) . (6)

More generally, however, the initial distribution will have a
mismatched envelope. In this case, the envelope will start
to oscillate due to the unbalanced focusing and defocusing
forces, and will start to induce halo formation as described
by the particle-core model [3, 4, 5]. In order to quantify
the initial beam envelope mismatch, we define a mismatch
parameter as given by 1 = r;,(0)/r(0).

A quantity that plays a key role in the determination of
the final stationary state of the beam is its average energy
per particle. This is given by

(v*) | o5(r?)

e=1
2 + 2

+ &y, @)

and is conserved along the transport. In Eq. (7), £y is the
beam self-field energy per particle given by [31]

_ 1 2y L[ (00N
Sw—47TK/|V1/)| dr—QK/0 <3r) rdr. (8)

The aim in the next Sections is to determine the final sta-
tionary state achieved by a beam of known initial distribu-
tion.
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DETERMINING THE FINAL
STATIONARY STATE

We start our analysis by considering a beam whose initial
distribution corresponds to a phase-space waterbag. That
is, the particles are uniformly distributed up to a maximum
radius 7, and a maximum speed v,

N
fo(r,v) = ’/TTE% O(rm — 1) O(vy, — v), )

where ©(x) is the Heaviside step function and ¢y = ¢(0) =
T'mUm 18 the initial beam emittance. Its energy per particle
can be readily computed by solving the Poisson equation
and using Eqgs. (7) and (8) to give

2 2,2

50:%+W+K_Klog<;m>.

1
4 4 8 2 w (19)

The waterbag distribution given by Eq. (9) is quite con-
venient for our discussion because it has the property that
all the occupied regions in phase-space have the same den-
sity N/m?e3. Hence, as the beam relaxes, the incompress-
ibility of the Vlasov dynamics will limit the occupation of
the lower energy states available to the progressively colder
core to this density value. In the final stationary state, there-
fore, the core will resemble a degenerate Fermi gas of den-
sity N/m%e? that extends up to a Fermi energy ¢ in the
phase-space. The value of € is yet unknown, but will be
determined self-consistently. As for the halo, the particle-
core model allows us to determine the maximum radius that
the halo particles can attain, r [3, 5]. Since the particle lo-
cated at r, represents the outermost one, we can easily de-
termine its energy as £, = o /2— K log(rp, /7). While
for initially cold beams it was found that the halo particles
tend to stay along the separatrix of the particle-core model
resonance [9], for finite emittance beams it was observed
that they typically spread uniformly in phase-space up to
the energy €, [26, 30]. Putting all this information together,
we write the final stationary distribution as

- WZ% [O(er — &) + XOlen — £)O(e — )],

(11)
where x is the ratio between halo and core density in
phase-space. The distribution is represented in Fig. 1(b).
Note that fs only depends on the phase-space coordinates
through the single particle energy ¢, defined in Eq. (3) and
is consequently an equilibrium distribution. It depends on
two still unknown parameter, er and x. By integrating
fs(r, v) over the velocity space we can determine the beam
density profile and self-consistently solve Poisson equation
(2). Both the density ns(r) and the self-field ¢s(r) of the
stationary state can be writen analytically in terms of mod-
ified Bessel functions. By imposing the conservation of
particles and conservation of energy, namely,

/fs(r,v)drdv =N,

fs(r,v)

12)
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(b)

Figure 1: Proposed final stationary distribution in phase
space formed by a dense core (dark gray) and a tenuous
halo (light gray).

2,.2
we determine the unknown parameter er and x. In
Eq. (13), ry, = 2(r?) = 2 [ r?ng(r)rdr, Eys is obtained
by subtitutin ¢s(r) in Eq. (8), and use has been made of
2(v?) = o3r} — K, valid for any equilibrium beam distri-
bution.

Once the final stationary state has been determined,
we can compute the total emittance growth that occurs
in the beam relaxation process, that is given by e, =
s/ 0ars, — K, as well as the fraction of particles that
evaporate to the halo, 7, = (Nx/7?€3) [ ©(ep, —¢)O (e —
ep)drdyv.

So far, we have only considered the relaxation of beams
with an initial distribution given by the waterbag distribu-
tion, in Eq. (9). In general, however, we may expect initial
distributions that present a nonuniform density in phase-
space. In order to handle such cases, we can discretize the
nonuniform distribution into p levels [30]. While this pro-
cedure allows for a very detailed description of the beam, it
demands an equally detailed knowledge of the beam initial
distribution. In many practical situations, however, there
is no such knowledge and all that is known from the ini-
tial beam are the RMS quantities, like the envelope and the
emittance. Taking this into consideration, we take the low-
est order p = 1 and approximate any given initial distribu-
tion by Eq. (9) with the envelope r,,, and emittance € cor-
responding to the actual beam. With this, we can estimate
the final stationary state, the emittance growth, and the halo
fraction for any beam, just based on its initial envelope and
emittance. Self-consistent simulations are presented in the
next section to verify the validity of this approximation.

NUMERICAL RESULTS

In order to test the theory presented, we perform V-
particle self-consistent simulations. The simulations are
based on Gauss’s law where the field at a certain radial co-
ordinate 7 depends on the total number of particles with
coordinates smaller than 7 [4]. This method precludes the
effects of collisions between individual particles and is con-
venient because instabilities and profile distortions around

13)
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the round shape are not expected here [32, 33]. In the sim-
ulations we launch N = 5000 macroparticles according
to a prescribed distribution and evolve them until a sta-
tionary state is reached. We consider three different initial
beam distributions, namely, a waterbag given by Eq. (9),
a semigaussian distribution and a full gaussian distribution
both in space and velocity. The analysis is simplified if we
measure longitudinal and transverse coordinates in units of
oy ! and (eg/00)'/?, respectively. Then, the initial beam
is characterized by two parameters only: K/opeq and the
mismatch parameter u. In the results presented below, the
halo size used in the theory is not directly obtained by
the particle-core model, but rather, the one approximated
by the empirical formula proposed by Ref. [5], namely,
rp = 2rf(1 + log p), where r} is the matched beam en-
velope of Eq. (6).

In Fig. 2, we compare the final stationary particle dis-
tribution obtained from the theory (solid lines) and the N-
particle simulation (dots) for three different cases. In panel
(a) we present the results for an initial waterbag distribu-
tion with K /ogeg = 0.1 and o = 1.5. This parameter set
corresponds to a mildly space-charge dominated beam that
is comparable to that found in the experiments of Ref. [7].
Despite the small space-charge forces a large halo is appar-
ent. Clearly the model agrees very well with the simulation
results, describing very closely both the core and the halo
particle distributions. In panel (b), we consider a beam with
the same initial distribution as in (a), but with larger space-
charge forces corresponding to K /ogep = 1.0. Again, a
very good agreement is found. In panel (c), we present an
example with a different initial distribution. In particular,
we consider the same parameters as in panel (b), namely
K/ogep = 1.0 and p = 1.5, but now for a fully gaussian
distribution. As expected, because the initial distribution
is nonuniform both in the configuration and the velocity
space, the final agreement between the final stationary state
reached in the simulation and the theory is not as impres-
sive as in the previous cases. Nevertheless, taking into con-
sideration the crudeness and simplicity of the model, the
results are still quite satisfactory. Particularly concerning
the halo distribution which is reasonably close to the actual

one.
We compare the emittance growth calculated from the

model and obtained from the simulations with different ini-
tial conditions. These results are presented in Fig. 3(a) as
a function of the mismatch parameter for K/ogey = 0.1,
The theoretical results are found to be in good agreement
with the numerical results. We also apply the theory to es-
timate the fraction of particles that evaporate from the core
to form the halo. In Fig. 3(b), we show F}, as a function
of the mismatch parameter y obtained from the theory. A
nearly linear dependence of the halo fraction with the mis-
match parameter is observed. The figure also indicates that
the halo fraction decreases as the space-charge is increased.
In fact, this trend is verified by computing F}, as a function
of K/opep for fixed p (not shown). We note that although
the halo fraction is a decreasing function of K/ogeq, the
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Figure 2: Comparison of the normalized charge as a func-
tion of radius obtained from the theory (solid curve) and
the IV-particle simulation (red dots).

total charge in the halo, given by K F},, grows as the beam
becomes more intense.

As far as emittance growth is concerned, the results pre-
sented in Fig. 3(a) for a low space-charge beam are very
similar to those obtained from the free-energy model de-
scribed in Ref. [1]. Thus, our emittance growth estimates
should also agree very well with the experimental results
presented in Ref. [7]. Nevertheless, in contrast to the free-
energy model [1], the theory derived here not only allows
for emittance growth estimates, but also provides o good
description of the final stationary distribution attained by
the beam, including halo density and fraction. Therefore,
it would be interesting to validate the model against ex-
perimental results of halo formation in mismatched space-
charge dominated beams [7, 34, 35, 36].

CONCLUSION

A simplified theoretical model that allows to predict the
final stationary state attained by an initially mismatched
beam is presented. The theory allows to estimate important
quantities, such as, the emittance growth and the fraction of
particles that evaporate to the halo in the relaxation process.
In particular, regarding the halo fraction, the model fore-
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Figure 3: In (a), the emittance growth €;/¢y as a func-
tion of the mismatch parameter n obtained from the the-
ory (solid curve) and the N-particle simulations (symbols)
for K/ogep = 0.1. The symbols correspond to the differ-
ent initial distribution in the simulation: waterbag (circle),
semi-gaussian (square), and gaussian beam (diamond). In
(b), the halo fraction F}, as a function of the mismatch pa-
rameter y obtained from the theory.

sees a nearly linear increase with the mismatch amplitude,
as well as an inverse dependence with the space-charge
parameter K /ogeg. Self-consistent N-particle simulations
were performed to verify the predictions of the theory.
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