
TRANSVERSE DECOHERENCE IN BUNCHES WITH SPACE CHARGE

Vladimir Kornilov and Oliver Boine-Frankenheim,
GSI, Planckstr. 1, 64291 Darmstadt, Germany

Abstract

Transverse bunch offsets typically occur after bunch-to-
bucket transfer between synchrotrons. Decoherence of the
oscillations can cause emittance growth and beam loss,
which should be avoided in high-intensity synchrotrons,
like the projected SIS-100 synchrotron of the FAIR project.
In this contribution we investigate how space charge mod-
ifies the bunch decoherence and associated diagnostics
methods as turn-by-turn chromaticity measurements.

DECOHERENCE DUE TO
CHROMATICITY

As a result of an initial transverse displacement A0, a
bunch oscillates in the corresponding plane (here x). In the
case of the Gaussian momentum distribution, the amplitude
of the bunch offset evolves with the turn numberN as [1]

A(N) = A0 exp

{
−2

(ξQ0δp
Qs

sin(πQsN)
)2

}
, (1)

here Q0 is the bare betatron tune, ξ is the chromaticity:
ΔQξ/Q = ξΔp/p, δp = σp/p is the normalized rms
momentum spread and Qs is the synchrotron tune. Here,
the linear synchrotron motion is assumed, the only source
of the tune spread is the chromaticity with the momentum
spread. Figure 1 shows an example for bunch decoherence
after the kick x = σx0, where σx0 is the horizontal rms
beam width, ε0 is the initial transverse rms emittance. The
effect of the chromaticity is usually quantified by the beta-
tron phase shift over the bunch length,

χb =
Q0ξ

η
τb , (2)

where η is the slip factor and τb is the bunch length in ra-
dian, calculated accordingly to the longitudinal truncation
at 2σ, which was taken for simulations. Figure 1 demon-
strates that a higher chromaticity provides a faster deco-
herence, and that after the synchrotron period Ns = 1/Qs

the initial offset amplitude appears again, which is called
recoherence.

The usual rms emittance, to which we refer here as the
“global” rms emittance, is given by

ε =
[
〈(x− xb)

2〉〈(x′ − x′b)2〉 −

〈(x − xb)(x
′ − x′b)〉2

]1/2
, (3)
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Figure 1: A particle tracking simulation for a Gaussian
bunch after an offset kick x(τ) = const. Top plot: time
evolution of the bunch offset for the head-tail phase shift
χb=1.5 (blue) and χb=4.3 (red), the dashed lines are given
by Eq. (1). Bottom plot: time evolution of the global rms
emittance [full lines, Eq. (3)] and of the local rms emittance
[dashed lines, Eq. (4)]. Line colors correspond to the top
plot. The synchrotron period is Ns=100 turns.

where 〈...〉 denotes averaging over bunch particles; xb and
x′b are the coordinate offset and the momentum offset of
the whole bunch. Additionally, the so-called “local” rms
emittance can be defined,

εlocal =
{
〈[x− x(τ)]2〉〈[x′ − x′(τ) ]2〉 −

〈(x− x(τ))(x′ − x′(τ) )〉2
}1/2

, (4)

where x(τ) and x′(τ) are the bunch offsets at the longi-
tudinal particle position τ in the bunch. Figure 1 (bottom)
demonstrates the difference between these two values for
the bunch decoherence and recoherence due to the chro-
maticity.

For the decoherence due to the chromaticity, all the
bunch parameters behave periodically. The opposite case
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is an oscillation damping due to e.g. a transverse nonlinear-
ity. Figure 2 shows an example for an octupole nonlinear-
ity, where the bunch decoherence is irreversible. Damping
of the coherent oscillations is accompanied by an increase
in the transverse emittance [3],

εmax

ε0
= 1 +

1

2

( A0

σx0

)2

, (5)

what we can observe in Fig. 2, where εmax = 1.5ε0. The
total and the local emittances are nearly identical in this
case. We should point out that in the case of bunch de-
coherence due to chromaticity the largest rms emittance is
also given by this εmax, and it can be reached if the betatron
phase shift χb is high enough, see Fig. 1.

Transverse oscillations excited by a bunch kick can be
also used to measure the chromaticity [2]. After an offset
kick x(τ) = const the phase difference in coherent beta-
tron oscillations between head and tail evolves as

Δψht = Δχ[1− cos(2πNQs)] , (6)

where Δχ = Q0ξΔτ/η is the head-tail phase shift be-
tween two bunch positions. The turn-by-turn chromaticity
can then be determined as

ξ(N) =
η

Q0Δτ

Δψht(N)

1− cos(2πNQs)
. (7)

This method can be also useful for numerical simulations,
as we demonstrate in the present work. Figure 3 shows the
head-tail phase difference between two bunch positions and
the resulting from Eq. (7) chromaticity, both in the turn-
by-turn mode. The phase difference was obtained using a
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Figure 2: Bunch decoherence with an octupole nonlinear-
ity: time evolution of the bunch offset (top plot), rms emit-
tance (bottom plot). The global (black) and the local (red)
rms emittance is shown. Simulation parameters correspond
to Fig. 1.

harmonic analysis for each single turn signal, for the bunch
head and for the bunch tail. In Fig. 3 (right) we see that this
method clearly reproduces the chromaticity.
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Figure 3: Time evolution of the turn-by-turn head-tail
phase difference (left) and the corresponding chromatic-
ity [right, obtained using Eq. (7)] after an offset kick.
The particle tracking simulation was made for a Gaus-
sian bunch, chromaticity ξ = −1 and synchrotron period
Ns=100 turns.

DECOHERENCE WITH SPACE CHARGE

Decoherence in bunches with self-field space-charge can
be understood using the effect of Landau damping [4, 5,
6]. The space-charge tune spread due to the longitudinal
density profile provides Landau damping. This damping
is induced exclusively by the space-charge effect. In order
to characterize the space-charge strength, we introduce the
space-charge parameter q = ΔQsc/Qs, where ΔQsc is the
peak space-charge tune shift (i.e. in the bunch middle). In
this work we assume a Gaussian longitudinal profile.

As we see in Ref. [6] (Fig. 2 there), at moderate space
charge ΔQsc ∼ Qs, the head-tail mode k = 1 is effectively
damped by the space-charge effect, and higher-order modes
are damped much faster, while the k = 0 mode is not af-
fected by space charge. If we consider the initial offset kick
x(τ) = const as a superposition of the head-tail eigen-
modes, it is clear that the modes k ≥ 1 will be damped and
the eigenmode k = 0 will continue to oscillate if there are
no other damping mechanisms. For stronger space charge,
Landau damping for the lowest-order eigenmodes becomes
much weaker (see Fig. 2 in [6]), thus a combination of the
k = 0 mode with higher-order modes will continue to os-
cillate, depending on q.

In Ref. [6] we also discuss that the transverse eigen-
functions in a Gaussian bunch with space charge are
very close to the airbag [7] eigenmodes, xk(τ) =
A0 exp(−iξQ0τ/η) cos(kπτ/τb). Hence, in the further
discussion here we use the airbag [7] eigenmodes as a rea-
sonable approximation.

Particle tracking simulations presented in this work were
done using PIC codes PATRIC [8] and HEADTAIL [9]. For
the transverse space charge force, the “frozen” electric field
model was used, i.e. a fixed potential configuration which
follows the mass center for each single slice. A round trans-
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Figure 4: Turn-by-turn chromaticity after an offset kick for
a bunch with space charge q = ΔQsc/Qs = 1, directly
after the kick (left) and 3000 turns later (right). Black sym-
bols: obtained using Eq. (9), red symbols: obtained using
Eq. (7).

Figure 5: Time evolution of the bunch offset after an offset
kick for a Gaussian bunch with space charge q = 1; χb =
1.5 (the red line) and χb = 2.9 (the blue line).

verse cross-section and a homogeneous transverse beam
profile were used in the simulations in this work. The code
validation, especially for long-time simulations with space
charge, was presented in [10].

In order to demonstrate the decoherence with space
charge, we use the method of the head-tail phase difference.
Figure 4 shows results of the chromaticity evaluation in a
simulation for a Gaussian bunch with space charge q = 1.
Red symbols in the left plot of Fig. 4 demonstrate that it is
not possible to use Eq. (7) for the chromaticity in the case
of a bunch with space charge. However, after some time
the bunch oscillations saturate, as we show in Fig. 5. If we
now consider a bunch with the k = 0 head-tail mode,

x(τ) = A0 cos
(χbτ

τb

)
(8)

we see that the head-tail phase difference Δψht = Δχ is
constant and the turn-by-turn chromaticity is given by

ξ(N) =
η

Q0Δτ
Δψht . (9)

The black symbols in Fig. 4 are calculated using this ex-
pression. The right plot confirms that only the k = 0 mode
remained in the bunch oscillations. Directly after the kick
(the left plot in Fig. 4), the head-tail phase difference can
not be described by Eqs. (7), (9), because the oscillation is
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Figure 6: Relative oscillation amplitude of the k = 0 mode
in a x(0) = const kick. The blue circles: results of de-
coherence simulations for a Gaussian bunch with space
charge q = 1. The red line: analytical expression Eq. (11).

a complex mixture of eigenmodes, each of them affected
by space charge differently.

Important bunch parameters, as the oscillation ampli-
tude and the beam size, which stay after the active phase
of bunch decoherence with space charge, depend on the
space-charge strength q and on the head-tail phase shift χb.
As discussed above, at q = 1 only the mode k = 0 continue
to oscillate. The final oscillation amplitude can be readily
estimated. The x(τ) = const kick can be decomposed into
a superposition of head-tail eigenmodes,

1 =
∑
k

ak exp
(
−iχbτ

τb
+ iφk

)
cos

(kπτ
τb

)
. (10)

The relative oscillation amplitude of an eigenmode can be
calculated as Ak = akdmax, where dmax is the maximum
bunch offset produced by the mode k. For the mode k = 0
we obtain

Ak=0 =
4

χ2
b

sin2
(χb

2

)
. (11)

In order to obtain Ak=0(χb) for a realistic Gaussian bunch
with space charge, we perform simulation runs for q = 1
with an offset kick x = σx0 for different χb, see an ex-
ample in Fig. 5. The resulting amplitudes of the k = 0
mode are presented in Fig. 6, together with the estimation
Eq. (11). The agreement is not perfect, since the airbag
[7] eigenmodes differ from the eigenmodes of a Gaussian
bunch, but the χb-dependencies are similar.

The transverse emittance blow-up after the bunch deco-
herence is also of high importance. Here we would like
to discuss not only the global rms emittance, but also the
local rms emittance from Eq. (4), because it gives a more
complete picture, especially in the case of persistent bunch
oscillations. Figure 7 shows an example for global [Eq. (3)]
and local [Eq. (4)] rms emittances in a decoherence simula-
tions with χb = 2.9, q = 1. With space charge, the global
rms emittance (the blue line) increases irreversibly by 32%.
But this does not describe the decrease of the phase-space
density correctly, because the bunch continues to oscillate.
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Figure 7: A comparison between the global rms emittance [Eq. (3)] and the local rms emittance [Eq. (4)] in a decoherence
simulation after an offset kick x = σx0 for a Gaussian bunch with space charge q = 1 and without space charge.
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Figure 8: Head-tail phase shift dependence of the emittance
blow-up after the bunch decoherence with an offset kick
x = σx0 for a Gaussian bunch with space charge q = 1
and without space charge. For the oscillating emittances,
the maximum values are given.

The maximum emittance blow-up for εlocal (the red line) is
only 16%.

Results for the emittance blow-up in decoherence with
space charge are summarized in Fig. 8. For oscillating
emittances, the maximum values are given. The increase
of the global emittance for decoherence with space charge
(the blue line) is always smaller than the maximum emit-
tance blow-up for the case without space charge (the black
line). The local emittance blow-up, which is relevant in
terms of the phase space density, is roughly a half of the
increase in the global rms emittance for the cases consid-
ered. In a comparison with the damping due to nonlin-
earities, which causes εfinal = 1.5ε0 for our parameters
here, the decoherence with space charge provides a smaller
emittance blow-up at moderate χb. Only at large head-tail
phase shifts the emittance increase reaches the limit of the
nonlinearity damping Eq. (5).
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Figure 9: Summary of the bunch decoherence simulations
for a Gaussian bunch with space charge q = 6: the oscil-
lation amplitude (top plot), the emittance blow-up (bottom
plot). For the oscillating emittances, the maximum values
are given.

As discussed above, at stronger space charge the mode
k = 1 is nearly not damped, and after the decoherence
phase the oscillation does not correspond to the k = 0
mode, but it is a mixture of modes. The simulation results
for space charge q = 6 are presented in Fig. 9. The oscilla-
tion amplitude does not saturate in these decoherence runs,
as it is the case in Fig. 5, instead it “beats” periodically. The
same is true for the rms emittance. Thus, the correspond-
ing maximum values are plotted in Fig. 9. In a comparison
to the q = 1 case (Figs. 6 and 8), for q = 6 the amplitude
reduction with growing χb is weaker, but the global rms
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emittance blow-up is stronger. Instead, the increase in the
local rms emittance is small. This difference is related to
the large oscillation amplitudes and small reductions in the
phase space density.

CONCLUSIONS

Decoherence in bunches with space charge has been
studied using particle tracking simulations. The initial kick
x(τ) = const can be considered as a superposition of head-
tail eigenmodes. Landau damping [4, 5, 6], induced in
bunches by the space-charge tune spread due to the longi-
tudinal density profile, effectively suppresses the head-tail
modes. The relative amplitude of an eigenmode in the off-
set kick depends on the head-tail phase shift χb, while the
Landau damping decrement for this mode depends on the
space-charge parameter q = ΔQsc/Qs. Thus, the oscil-
lation after the decoherence can be a complex mixture of
eigenmodes, each of them affected by space charge differ-
ently.

The case q = 1 has been considered in detail. Landau
damping suppresses strongly all the head-tail modes k ≥ 1
for this space charge strength. The oscillation after the
decoherence phase corresponds to the eigenmode k = 0.
The oscillation amplitude reduction with growing χb can
be easily understood in this case as the relative amplitude
of the k = 0 mode in the offset kick.

The method to determine the chromaticity [2] using the
head-tail phase difference in coherent oscillations has been
used. Generally, for bunches with space charge it is not
possible to use the usual model Eq. (7) for the turn-by-turn
chromaticity. It has been demonstrated, that, if Landau
damping due to space charge suppresses the k ≥ 1 modes,
which is the case for e.g. q = 1, the chromaticity can be
obtained using Eq. (9).

The emittance blow-up due to bunch decoherence has
been examined. Without space charge, the rms emittance
increases periodically, recovering to the initial value each
1/Qs turns. The emittance blow-up depends on χb, but
the maximum emittance increase corresponds to that of
the damping due to nonlinearities, see Eq. (5). For bunch
decoherence with space charge, the increase of the rms
emittance is normally smaller than the maximum emittance
blow-up for the case without space charge. In a comparison
with the damping due to nonlinearities, the decoherence
with space charge provides a smaller emittance blow-up at
moderate χb. Only at large head-tail phase shifts the emit-
tance increase reaches the limit of the nonlinearity damping
Eq. (5). In order to describe the emittance blow-up more
accurately, the concept of the local rms emittance Eq. (4)
has been used. It has been demonstrated, that in the case
of an oscillation with a large amplitude, the increase in the
global emittance can be large. However, this is not always
true for the phase space density. This can be seen using the
local rms emittance which can have a small increase.
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