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and China. These programs are investigating whether 
ADS can speed up the deployment of the U-233/Th fuel 
cycle by breeding U-233, which does not exist in nature.  

A well designed accelerator-driven transmuter would 
operate in a sub-critical mode, and with limited excess 
reactivity such that the transmuter cannot reach criticality 
under any design basis accident. [3] For this type of 
transmuter, the fission rate is directly proportional to the 
source neutron production rate. The flexibility enabled by 
subcritical operation has several advantages: 

» can drive systems with low fissile content (Th or 
M.A.) or high burden of non-fissile materials, 

» unlike critical reactors, can safely operate with 
fuel having a relatively low delayed neutron fraction, and 

» can compensate for large uncertainties in initial 
reactivity or burnup reactivity swings by varying the 
source rate, which for an accelerator driven system is 
proportional to the beam current. 

 
Process Heat Utilization 

 
Converting the fission power into a useable energy 

source is highly advantageous for transmuters to help 
recover the facility capital and operating costs and 
essential for a facility designed for power production.  

One option is to sell the excess power to the grid. Based 
on recent experience with superconducting accelerator 
technology, the design of highly fault-tolerant 
accelerators is a reasonable expectation. [4] Storing 
power with the use of power storage devices could 
provide the electricity to run through faults if they can 
store enough electricity to enable providing steady power 
to the grid through the longest of expected interruptions. 
The practicality of running through the range of possible 
interruptions requires a more detailed design effort.  

Another option is to convert the power into another 
energy form. Charles Forsberg has proposed that biomass 
can be converted to greenhouse-gas-neutral liquid fuels. 
[5] The conversion of biomass-to-liquid fuels is energy 
intensive but the transmuter can produce the significant 
amount of heat, electricity, and hydrogen required for the 
processing of biomass-to-liquid fuels. The overall process 
has a comparable efficiency to electrical production, but 
the end result can be carried away in tankers. If the 
accelerator operation is deemed too unreliable for the 
electrical grid, then converting biomass into fuel for a net-
zero carbon-footprint would seem to be not only a good 
option, but the preferred option. 

ACCELERATOR TECHNOLOGY 
 

Accelerator Design 
 
Accelerator-based transmutation includes four major 

technology elements: accelerators, transmuters, and 
separations, fuels and waste forms, Shown in Fig. 3. This 
paper only covers the accelerator systems. 

 
Figure 3: Major sub-systems of an ADS facility. 

 
The power of the accelerator is determined by the 

design of the subcritical multiplier. For example, for a 
subcritical blanket fission power of 1 GW and with the 
multiplier keff in a range of 0.95 to 0.98( keff gives the 
neutron multiplication factor in a reactor; this factor is 
keff/(1- keff)) will have a proton beam power ranging from 
18 MW to 7 MW and a beam current swing of 12 mA to 5 
mA, assuming a beam energy of 1.5 GeV. Either starting 
out with a lower keff for safety or going to deeper burn 
and resulting in a lower keff at cycle end, requires an 
increase in the accelerator current to maintain a constant 
neutron flux in the reactor. Given fixed beam energy, the 
accelerator capital cost is determined in large part by the 
average current. Designing an accelerator for a large 
current swing requires a very high beam current that is 
used for only part of the transmutation cycle resulting in 
cost inefficiency. 

This application is best served by a continuous wave 
machine, either linac or cyclotron. Cyclotrons could 
potentially deliver up to 10 MW of beam power (10 mA 
at 1000 MeV). Linacs are limited to about 100 mA per 
front end system, with funneling used to double the 
current. Either type could serve to drive a subcritical 
transmuter. 

Since this transmuter system will be a production 
system, a factor of 1.5 to 2 overhead margin is typically 
built into the performance specification to assure high 
operational reliability and long life. Based on present 
research, the maximum operational currents are 5 to 8 mA 
for cyclotrons and 50 to 75 mA for linacs. We are looking 
at accelerator systems that could drive several GW 
thermal power plants and have currents up to 40 mA. The 
accelerator technology covered in this article will be 
limited to linac systems. 

Economy of scale generally favors going to the highest 
average power from a single accelerator. Note that the 
beam may impinge on a single target in a core, be split 
into separate targets in a single core, or be directed to 
multiple cores. With the consideration of multiple targets, 
multiple accelerators may provide system redundancy and 
improved reliability, but at added cost. Beam parameters 
consistent with the above operating numbers were 
demonstrated to be feasible under the Accelerator 
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Production of Tritium (APT) [6] program, as shown in 
Fig. 4. 

The linac requirements follow from other sub-system 
requirements, but more thorough studies are required to 
determine the full sets of requirements. For example, 
beam interrupts longer than 1 second might negatively 
impact the subcritical multiplier. The engineering 
challenges need to be fully scoped out for the safe, 
controlled coupling of an accelerator to a subcritical 
reactor through a spallation target. System control and 
safe operation will demand the understanding and 
resolution of the potentially complex behavior of this 
coupled accelerator/target/reactor system. 

 

Figure 4: The accelerator preliminary design is based on 
the technologies developed for the APT program. The 
superconducting linac reduces cost and improves 
performance and reliability (i.e. beam continuity).   

A superconducting-radiofrequency (SCRF) linac is 
typically  chosen for the linac because, compared to linacs 
using traditional room-temperature (RT) copper 
technology, SCRF linacs are more power efficient and 
expected to have higher reliability. The SCRF linac will 
employ independently controlled RF modules with 
redundancy, allowing the less than 300 ms adjustment of 
RF phases and amplitudes of RF modules to compensate 
for faults of individual cavities, klystrons, or focusing 
magnets. The SCRF cavities will have larger bore radius 
that relaxes alignment and steering tolerances, as well as 
reducing beam loss. 

Alternative approaches to high proton beam power 
include synchrotron technology, which has the capability 
of achieving powers in excess of 1 MW, but is limited to 
pulsed operation at relatively low duty factor, and Fixed-
Field Alternating Gradient (FFAG) accelerators that are 
actively studied at laboratories throughout the world. 
Synchrotrons and FFAGs have some similar intrinsic 
features, but the repetition rate for FFAGs can be much 
higher (albeit without the capability for true CW 
operation). While promising, FFAGs have yet to 
demonstrate high beam-power capability. 

 
Accelerator Issues 

 
The major ADS related issues are: 

» Multiplying assembly design 
o Neutronics analysis 
o Thermal-hydraulic analysis 
o Safety analysis 
o Fuels 
o Structural materials 

» Coolant technologies (i.e. - lead-bismuth-eutectic, etc. ) 

o Corrosion studies / oxygen control 
o Erosion studies 
o Safety assessment / polonium release 

» Spallation target technologies 
o Window vs. windowless targets 
o Target material and coolant options beyond LBE 

» Accelerator systems 
o Effect of transients on materials 
o Effect of transients on fuels 
o Quality of electrical power delivered to the grid 
o Periodic maintenance 
o High-power accelerator design 
o Reliability-Availability-Maintainability-

Inspectability (RAMI) assessments 
This paper only covers the accelerator beam trip 

requirements that follow from thermo-mechanical 
considerations of transients on the spallation target and 
subcritical assembly and, for power production 
applications, reliable electrical power delivery to the grid. 
The maximum number of allowed beam trips of a given 
duration depends on the design details, including the 
coolant parameters and characteristics, the coolant system 
design, the materials used, and the average power 
densities in the different ADS components.  

In the last several years, more thorough and detailed 
beam trip requirement analyses have been performed 
based on transient analyses of ADS reactor system 
components. Three analyses in particular show reasonable 
agreement on the transient response and resulting beam 
trip requirements. A JAEA study [7] considered an 800 
MWth subcritical reactor driven by a 30 MW proton 
beam. The analysis considered thermal shock and cycling 
on the beam window, reactor vessel, inner barrel and 
turbine system. The resulting beam trip rate limits are 
25,000/yr for short beam interruptions (< 5 sec), 2500/yr 
for interruptions greater than 5 and less than 10 seconds, 
250 per year for interruptions greater than 10 seconds and 
less than 5 minutes, and 50/year for interruptions greater 
than 5 minutes. A recent MYRRHA study [8] found 
similar results, yielding beam trip limits of 2500 trips/year 
for interruptions greater than 1 second and less than 10 
seconds, 2500 trips/year for interruptions between 10 
seconds and 5 minutes, and less than 25/year for 
interruptions greater than 5 minutes. These results include 
a factor of 10 safety margin. A U.S. study performed in 
2001 [10] yielded beam trip limits of 1000 trips/year for 
interruptions longer than 0.3 sec but shorter than 100 sec, 
and 30 trips/year for interruptions longer than 100 
seconds. It is worth emphasizing that these beam trip 
limits, derived from transient analyses of subcritical 
reactor components, are two orders of magnitude less 
stringent than typical values published previously [9]. For 
power generation applications, the beam trip rate 
requirements are more stringent, limited to only a few 
long unscheduled interruptions per year in order to meet 
reliability requirements set by the demands of commercial 
power production.  

Additional safety-related requirements include safety-
class beam shutdown capability, limitations on maximum 
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