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A B S T R A C T

Fourth-generation storage rings enabled by multi-bend achromat lattices are being inaugurated worldwide and
many more are planned for the next decade. These sources deliver stable ultra-high brightness radiation with
unmatched levels of transverse coherence by virtue of their highly advanced magnetic lattices. Optimization
of these challenging and strongly nonlinear lattices with many degrees of freedom bounded by extensive sets
of constraints and multiple often conflicting optimization goals is highly demanding and requires application
of the most advanced numerical tools available to the community. While multi-objective genetic algorithms
have been very successful in supporting these optimization efforts, the algorithms suffer from a fundamental
limitation of their stochastic nature: an exceedingly vast number of candidate lattices, most of which eventually
are rejected, has to be fully evaluated. This comes at immense computational cost and thus drives excessive
runtime despite use of large supercomputing clusters. We therefore propose to employ deep learning techniques
and iterative retraining of neural networks to massively accelerate such lattice evaluation, thereby allowing
lattice optimization to rely on far fewer a priori assumptions, open up to larger search ranges, and include right
from the start and in parallel multiple error distributions to find truly global optima, all while completing a
full optimization campaign in weeks rather than months. In this paper we present the neural network designs,
the deep learning approach, iterative retraining procedures, and demonstrate how these machine learning
techniques can be incorporated into existing state-of-the-art optimization workflows with only minimal changes
applied to the optimization pipeline itself and none at all to the employed tracking codes.

1. Introduction

Storage-ring based synchrotron light sources around the world are
presently undergoing a massive transformation. Pioneered in MAX
IV [1], the multi-bend achromat (MBA) [2] lattice has ushered in the
era of 4th-generation storage rings (4GSRs): a class of ring-based light
sources capable of delivering stable ultra-high brightness diffraction-
limited synchrotron radiation with a high degree of transverse co-
herence simultaneously to dozens of beamlines. The MBA lattice—
presently foreseen by almost every new source and upgrade project—is
composed of many small-aperture magnets with high field gradients
capable of providing the strong focusing necessary to achieve ultra-
low emittance. This strong focusing reduces the dispersion and drives
the natural chromaticity in the lattice. Combined, this calls for very
strong sextupoles leading to highly nonlinear lattices exhibiting limited
dynamic aperture (DA) and momentum aperture (MA) compared to
those of 3rd-generation light sources. Apart from the many engineering
difficulties in the design of a 4GSR, the beam physics and lattice
optimization itself present a significant challenge due to the large
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number of magnets that need to be tuned in a multi-variate and multi-
objective optimization process. Apart from lattice design expertise, this
usually calls for the most advanced numerical and analytical resources
available to the community.

Multi-objective genetic algorithms (MOGA) [3] have proven to be
one of the most successful and commonly used tools for the optimiza-
tion of modern light source lattices [4–6]. Multiple variants of MOGA
are available, among which the Pareto-based algorithm NSGA-II is the
most popular [7,8]. Optimization of an MBA lattice with MOGA is
highly non-trivial since ultra-high brightness, lifetime, and injection
efficiency are usually in direct competition and a suitable trade-off
needs to be carefully established, taking into account an exceedingly
large number of constraints. While MOGA is extremely well equipped to
undertake such optimization, it suffers from the fundamental limitation
that—as a stochastic process—it requires a vast number of candidate
lattices to be evaluated. Nonlinear lattice evaluation based on many-
turn particle tracking is very CPU-expensive and nevertheless, almost
all evaluated lattices are eventually rejected by MOGA. This weakness,
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Synchrotron light sources, arguably among the most powerful tools of modern scientific discovery,
are presently undergoing a major transformation to provide orders of magnitude higher brightness and
transverse coherence enabling the most demanding experiments. In these experiments, overall source stability
will soon be limited by achievable levels of electron beam size stability, presently on the order of several
microns, which is still 1–2 orders of magnitude larger than already demonstrated stability of source position
and current. Until now source size stabilization has been achieved through corrections based on a combination
of static predetermined physics models and lengthy calibration measurements, periodically repeated to
counteract drift in the accelerator and instrumentation. We now demonstrate for the first time how the
application of machine learning allows for a physics- and model-independent stabilization of source size
relying only on previously existing instrumentation. Such feed-forward correction based on a neural network
that can be continuously online retrained achieves source size stability as low as 0.2 μm (0.4%) rms, which
results in overall source stability approaching the subpercent noise floor of the most sensitive experiments.

DOI: 10.1103/PhysRevLett.123.194801

Introduction.—Synchrotron radiation sources, specifi-
cally third-generation storage ring light sources, have
been tremendously successful tools of scientific discov-
ery since the early 1990s [1]. As these facilities mature, a
new era of fourth-generation storage rings (4GSRs) based
on diffraction-limited storage rings (DLSRs) [2–8] is
being ushered in. These sources will increase average
brightness by 2–3 orders of magnitude while also deliv-
ering high degrees of transverse coherence, for the first
time even for x rays. High coherent flux will enable
scientists to understand material compositions and
dynamics ranging in length from microns to nanometers
and in time from minutes to nanoseconds. The most
notable and direct result of the new beam properties will
impact two techniques in particular. Ptychography [9]
will take direct advantage of an increase in coherent flux
to decrease measurement times by orders of magnitude.
This will allow for the collection of complex 3D chemical
maps with unprecedented resolution and will lead to
deeper understanding of electrochemical systems such as
batteries and fuel cells. The measurement of dynamics
and kinetics to study chemical systems is another cat-
egory that will be directly impacted by the new sources.
An emerging technique to study this is x-ray photon
correlation spectroscopy (XPCS) [10]. Ptychography as

well as XPCS rely heavily on high beam stability over
extended periods of time.
To large extent the success of storage ring light sources

lies in their stability, resulting in constant position, angle,
and intensity of radiation delivered at a tunable wavelength
with narrow width. In order to maintain constant intensity,
a combination of top-off injection (maintaining constant
beam current) [11,12] and precise control over source
position and size is required. In third-generation light sources
(3GLSs) the latter usually called for transverse beam size
stability within 10% of the rms electron beam size [13,14].
Now, however, first experiments at these sources are starting
to show limitations arising from such levels of source size
control and it is evident that DLSRs, operating at much
smaller source sizes, will call for significantly tighter control
over source size stability in order to exploit ultrahigh
brightness and transverse coherence.
State-of-the-art stabilization effort and its limitations.—

A typical example for the aforementioned source size
stabilization challenge is shown in Fig. 1. The vertical
electron beam size as measured at diagnostic beam line
3.1 [15] of Lawrence Berkeley National Laboratory’s
Advanced Light Source (ALS) is displayed during a typical
user run. While the horizontal beam size remains constant
(spikes observed in both planes at the same time are
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• State-of-the-art	storage	ring	light	sources	achieve	excellent	
stability	in	terms	of	beam	current	(top-off	injection)	&	
beam	position/angle	(orbit	feedbacks)	
• ID	effects	are	countered	with	extensive	correction	efforts	
• ID	feed	forwards	rely	on	look-up	tables	that	require	
dedicated	machine	time	and	periodic	re-recording	
• Yet	in	spite	of	all	these	correction	efforts,	beam	size	is	still	
perturbed	by	insertion	device	(ID)	config	changes	
• Resulting	level	of	performance	has	started	to	become	a	
limitation	at	most	demanding	experiments	
• Expected	to	become	a	serious	issue	in	4th-generation	
sources,	eg.	DLSRs	with	STXM,	XPCS,	ptychography,	etc.

Stabilizing	Electron	&	Photon	Beams

4

Courtesy:	C.	Steier,	PAC'09
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Stabilizing	Electron	&	Photon	Beams
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VerXcal	beam	size	@	BL3.1

4%	source	size	variation

ALS	DiagnosXc	Beamline	3.1



Simon	C.	Leemann	•	Machine	Learning	Applications	for	Storage	Ring	Light	Sources	
FLS	2023,	Lucerne,	Switzerland,	Aug	27	–	Sep	1,	2023

	
	

	
	

	
	

	Lawrence Berkeley National Laboratory 
 
One Cyclotron Road / MS: XX-XXX / Berkeley, California 94720 USA / phone 510-4XX-XXXX / fax 510-4XX-XXXX 

U.R.  Namehere 
Title 
2 October 2014 

	
	
	
	 	

• State-of-the-art	storage	ring	light	sources	achieve	excellent	
stability	in	terms	of	beam	current	(top-off	injection)	&	
beam	position/angle	(orbit	feedbacks)	
• ID	effects	are	countered	with	extensive	correction	efforts	
• ID	feed	forwards	rely	on	look-up	tables	that	require	
dedicated	machine	time	and	periodic	re-recording	
• Yet	in	spite	of	all	these	correction	efforts,	beam	size	is	still	
perturbed	by	insertion	device	(ID)	config	changes	
• Resulting	level	of	performance	has	started	to	become	a	
limitation	at	most	demanding	experiments	
• Expected	to	become	a	serious	issue	in	4th-generation	
sources,	eg.	DLSRs	with	STXM,	XPCS,	ptychography,	etc.

Stabilizing	Electron	&	Photon	Beams

7

During	user	ops

3.2%	variaXon

No	ID	moXon

0.5%	variaXon

STXM	@	ALS	Beamline	5.3.2.2
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•Machine	Learning	(ML)	can	can	model	highly	nonlinear	processes,	is	
extremely	flexible	
•ML	can	exploit	large	amounts	of	data	that	are	already	collected	during	
routine	operations	➔	“training”	
• Once	trained,	neural	network	(NN)	provides	predictions	for	vertical	
beam	size	changes	resulting	from	ID	config	changes	&	magnetic	
corrections	
•Magnetic	corrections	implemented	as	excitation	change	to	the	32	
skew	quadrupoles	driving	the	vertical	dispersion	wave	
• These	NN	predictions	can	serve	as	a	dynamic	lookup	
• If	such	a	lookup	is	incorporated	into	the	accelerator	control	system	as	a	
feed	forward	(FF),	we	can	stabilize	the	electron	beam	source	size	over	
prolonged	periods	of	time	(online	retraining	exploited	to	mitigate	
machine	drift)

Machine	Learning	to	the	Rescue

8

Courtesy:	S.	Liu
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Developing	a	SoluMon	Based	on	Machine	Learning	

• Machine	Learning	can	exploit	large	amounts	of	data	that	are	already	
collected	during	rou<ne	opera<ons	

• Once	trained,	neural	network	(NN)	provides  
predic+ons	for	beam	size	changes	that	result 
from	inser<on	device	(ID)	config	changes 
&	magnet	correc<ons

4

Insertion Device (ID)  
Settings

Beam Size

Magnet Excitation
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Simulating	NN-based	ID	FF	During	Physics	Shift

11

• Scanned	various	ID	
configurations	and	skew	
excitations	(DWP)	to	
record	initial	training	
data	

• Training	fully-connected	
3-layer	NN	(128-64-32)	
required	≈15min	on	
single	core	

• NN-based	ID	FF	turned	
on	while	continuing	to	
scan	ID	configurations	➔	
verify	stabilization

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801
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NN-based	ID	FF	Off	vs.	On	During	User	Ops

12

• During	user	ops	NN-based	
ID	FF	running	at	≈3	Hz	in	
addition	to	of	all	other	
conventional	FBs	and	FFs	

• Observed	roughly	5-fold	
reduction	of	V	rms	source	
size	motion	at	diagnostics	
BL	

• Online	retraining	of	the	NN	
(using	data	acquired	with	
FF	engaged	during	user	
ops)	➔	capture	ID	
configurations	not	
observed	during	initial	
training

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801
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Stabilization	Confirmed	at	Most	Sensitive	Experiment

13

During	user	ops

3.2%	variaXon

No	ID	moXon

0.5%	variaXon

STXM	@	ALS	Beamline	5.3.2.2

Noise	reduced	to	almost	floor	level

NN-based	ID	FF	on

Online	Retraining

PRL	123,	194801	(2019)

https://doi.org/10.1103/PhysRevLett.123.194801


Part	2:	ML	Improving	Design	of	
Future	Storage	Ring	Light	Sources
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Introduction:	The	Problem

• 4th-generation	storage	rings	(4GSRs)	leverage	MBA	lattices	
to	render	ultra-high	brightness	with	large	coherent	fraction	
•MBA	lattices	are	very	challenging:	dense	&	exploit	very	
strong	focusing	➔	drives	strong	chromatic	&	higher-order	
corrections	
• Solutions	often	highly	nonlinear	&	involve	many	degrees	of	
freedom	(DoF)	➔	demanding	optimization	
•Multi-objective	genetic	algorithms	(MOGA)	are	highly	
successful	at	such	optimization	&	have	become	tool	of	
choice	
• However,	stochastic	nature	is	inherent	weakness	
• Do	not	want	to	artificially	limit	DoF,	search	ranges,	or	make	
many	initial	assumptions	about	attractive	solutions	➔	so	
what	can	we	do?

15

| 7

ALS-U | INTRODUCTION

Figure 1.1.1. The planned ALS upgrade will involve removal of the existing accelerator lattice and installation of a multibend 
achromat lattice and an accumulator ring for swap-in, swap-out injection. The electron beam cross section will change from 
wide horizontally (left) to approximately circular (right) and small enough that the resulting x-ray beams will be transversely 
coherent (i.e., diffraction limited) through the entire soft x-ray regime.

$Q�[�UD\�VRXUFH�WKDW�LV�VPDOO�DQG�VXIĆFLHQWO\�FROOLPDWHG��L�H���EULJKW�HQRXJK��ZLOO�EH�GLIIUDFWLRQ�OLPLWHG��ZLWK�

D�Ć[HG�SKDVH�UHODWLRQVKLS�EHWZHHQ�DQ\�WZR�ORFDWLRQV�RQ�D�ZDYH�IURQW��7KH�GLUHFW�FRQVHTXHQFH�LV�WKDW�DOO�

RI�WKH�LQWHQVLW\�RI�WKH�EHDP�FDQ�EH�IRFXVHG�LQWR�WKH�VPDOOHVW�SRVVLEOH�VL]H��DV�GHĆQHG�E\�WKH�ZDYHOHQJWK��

As a result, coherence-based experiments that are now done routinely with longer-wavelength lasers will 

become possible with x-rays with up to 1000-fold shorter wavelengths that are therefore sensitive to 

nanoscale phenomena.

Figure 1.1.2. (QYHORSHV�RI�EULJKWQHVV��OHIW��DQG�FRKHUHQW�ćX[��ULJKW��IRU�XQGXODWRU�VRXUFHV�DW�$/6��$/6�8��DQG�VHYHUDO�RWKHU�
RSHUDWLQJ�DQG�SODQQHG�[�UD\�IDFLOLWLHV��&RKHUHQW�ćX[�LV�WKH�PHWULF�WKDW�GHWHUPLQHV�WKH�WLPH�UHTXLUHG�WR�DFFRPSOLVK�DQ�
experiment with a given spatial, spectral, and temporal resolution, and is proportional to brightness divided by the square of 
the photon energy.
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Introduction:	The	Problem

• 4th-generation	storage	rings	(4GSRs)	leverage	MBA	lattices	
to	render	ultra-high	brightness	with	large	coherent	fraction	
•MBA	lattices	are	very	challenging:	dense	&	exploit	very	
strong	focusing	➔	drives	strong	chromatic	&	higher-order	
corrections	
• Solutions	often	highly	nonlinear	&	involve	many	degrees	of	
freedom	(DoF)	➔	demanding	optimization	
•Multi-objective	genetic	algorithms	(MOGA)	are	highly	
successful	at	such	optimization	&	have	become	tool	of	
choice	
• However,	stochastic	nature	is	inherent	weakness	
• Do	not	want	to	artificially	limit	DoF,	search	ranges,	or	make	
many	initial	assumptions	about	attractive	solutions	➔	so	
what	can	we	do?

16
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Improving	MOGA:	ML	to	the	Rescue

18

[1]	M.	Kranjčević,	B.	Riemann,	A.	Adelmann,	A.	Streun,	PRAB	24	014601,	2021.	
[2]	Y.	Li,	W.	Cheng,	L.	Yu,	R.	Rainer,	PRAB	21	054601,	2018.	
[3]	J.	Wan,	P.	Chu,	Y.	Jiao,	PRAB	23	081601,	2020.

•ML	can	be	employed	to	render	neural	networks	(NNs)	➔	surrogate	
models	used	in	lieu	of	computationally	expensive	evaluation	
• Lattice	candidate	evaluation	becomes	near	instantaneous	
• Aim	to	speed	up	MOGA	without	modifying	MOGA/tracking	tools	or	
existing	workflows	&	without	sacrificing	physics	fidelity	
• Previous	attempts	[1-3]	have	focused	on	various	aspects,	but	we	
set	out	with	a	different	emphasis:	
- Direct	optimization	of	relevant	physics	quantities	(ε0,	DA,	MA)		
- Combined	linear/nonlinear	optimization	involving	all	free	
parameters	(quadrupoles	&	sextupoles)

Courtesy:	S.	Liu



Simon	C.	Leemann	•	Machine	Learning	Applications	for	Storage	Ring	Light	Sources	
FLS	2023,	Lucerne,	Switzerland,	Aug	27	–	Sep	1,	2023

	
	

	
	

	
	

	Lawrence Berkeley National Laboratory 
 
One Cyclotron Road / MS: XX-XXX / Berkeley, California 94720 USA / phone 510-4XX-XXXX / fax 510-4XX-XXXX 

U.R.  Namehere 
Title 
2 October 2014 

	
	
	
	 	

• ALS-U	storage	ring	(SR)	calls	for	a	challenging	9BA	to	
achieve	≈75	pm	rad	(round	beam)	at	2	GeV	in	200-m	tunnel	
➔	diffraction	limited	@	1.2	keV	(1	nm)		
• 9BA	lattice	becomes	very	dense	&	has	strained	optics	
•MOGA	(@	2nd	stage):	9	quads,	4	sextupoles	➔	11	free	knobs	
• ≈15	magnet/lattice	constraints	on	top	of	quadrupole	
ranges	(from	1st	stage)	
• Objectives:	ε0,	MA,	and	on-momentum	DA	(total	diff.	rate)	
• Highly	staged	MOGA	approach	resulted	in	

- ±1	mm	DA	(on-axis	swap-out	injection	with	AR)	
- ≈1	hr	lifetime	(with	3HCs)	

- …but	required	months	of	CPU	time	on	large	clusters

ALS-U	as	a	Test	Case

19
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• 9 combined-func#on bending magnets with uniform bending 3.33 deg 

• 7 quad families, 2 chroma#c and 2 harmonic sextupole families
• Space constraints

–  Align the straight to exis#ng ID loca#on 
–  Length of the center straight is 5.145 m
–  Minimum spacing between magnets is 75 mm 

• Magnet strength constraints
– Quad  gradient <105 T/m
–  Inner bend gradient  40 T/m <k1<47 T/m and outer bend gradient  k1<20 T/m
–  Chroma#c sextupole gradient  k2 <7000 T/m^2 and harmonic sextupole gradient   k2 <4000 T/m^2

• Physics constraints
– Maximum beta func#on < 30m

– Equal frac#onal tunes for round beam

– Dispersion in the straight <1mm

QF1 QF2 QF4 QF5 QF6 QF6 QF5 QF4 QF2 QF1QF3 QF3

SF

SD SD

SF

QD1 QD1

SH1 SH2 SH1SH2

B31B1 B2 B3 B3 B3 B3 B3 B2

One sector of 9BA la0ce 

 Magnet Layout and Constraints

 central arc dispersion bump matching straightdispersion bumpmatchingstraight
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• ALS-U	storage	ring	(SR)	calls	for	a	challenging	9BA	to	
achieve	≈75	pm	rad	(round	beam)	at	2	GeV	in	200-m	tunnel	
➔	diffraction	limited	@	1.2	keV	(1	nm)		
• 9BA	lattice	becomes	very	dense	&	has	strained	optics	
•MOGA	(@	2nd	stage):	9	quads,	4	sextupoles	➔	11	free	knobs	
• ≈15	magnet/lattice	constraints	on	top	of	quadrupole	
ranges	(from	1st	stage)	
• Objectives:	ε0,	MA,	and	on-momentum	DA	(total	diff.	rate)	
• Highly	staged	MOGA	approach	resulted	in	
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- ≈1	hr	lifetime	(with	3HCs)	

- …but	required	months	of	CPU	time	on	large	clusters

ALS-U	as	a	Test	Case
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4

The purpose of this step is to narrow down the search283

ranges of the quadrupole gradients, thus excluding pa-284

rameters that lead to non-physical (unstable) solutions285

or violate our linear property targets. Because the non-286

linear properties are not evaluated, this stage is very fast.287

The optimization objectives are the natural emittance288

and beta functions in the straight-section mid-points,289

which are directly related to the brightness of the ma-290

chine, the ultimate goal of this lattice optimization. We291

also set a 150 pm rad upper-limit cut-o↵ for the natu-292

ral emittance and reject lattice solutions with straight293

section beta functions larger than 3m or less than 1 m.294

Horizontal and vertical tunes are forced to be nearly iden-295

tical in anticipation of operation at coupling resonance.296

Instead of letting the optimization run its full course, we297

monitor the evolution of the lattice population and stop298

the run when we determine that the emittance and beta299

functions spread over a su�ciently small, but not too300

narrow range. Then, the last generation is selected as an301

initial population for the next stage: linear and nonlinear302

lattice optimization.303

In this 2nd stage, both linear and nonlinear properties304

of the lattice are optimized simultaneously. The linear305

property objectives are the same as before, except that306

beta functions are no longer optimized but rather con-307

strained. A full list of the applied constraints is given308

in Table I. The nonlinear properties to be optimized are309

TABLE I. Constraints for ALS-U Lattice Optimization.

Natural emittance "0 < 155 pm rad
Maximum beta �x,y < 30m
Maximum dispersion ⌘x < 15 cm
Fractional tunes 0.1 < ⌫x,y < 0.4
Dispersion at center of straight |⌘⇤

x| < 1mm
Beta at center of straight 1m < �⇤

x,y < 5m
Beta in central arc bends (B3) �B3

x,y < 4m
Fractional tune di↵erence |⌫x � ⌫y| < 0.01
Chromatic sextupole strength (SF, SD) b2 < 900m�3

310

311

DA and MA which are related to machine performance312

through injection e�ciency and Touschek lifetime. We313

do not directly optimize the injection e�ciency since its314

evaluation is very time consuming and depends on the315

exact injection method. It also strongly depends on the316

exact longitudinal phase space which in turn can be heav-317

ily a↵ected by harmonic cavities; at such an early stage318

in the design process we prefer not to make assumptions319

about such systems yet. In practice, DA can be evalu-320

ated either by 6D tracking to estimate DA area or by 4D321

tracking using frequency map techniques to estimate the322

total di↵usion rate [14–16]. The latter method is used323

in our optimization since it has been observed to render324

superior lattice performance3. The evaluation of Tou-325

3
A smaller but contiguous area of low di↵usion is preferred over

a larger DA that contains many areas of elevated di↵usion (indi-

cating onset of chaotic motion) [14–16].

schek lifetime requires MA evaluations along the machine326

which is extremely time consuming. Instead, averaged327

MA at select points along one sector is used as a proxy328

for Touschek lifetime. In this 2nd optimization stage the329

tuning knobs consist of all 9 quadrupole gradients plus 2330

harmonic sextupole strengths. The chromatic sextupoles331

are tuned by fitting chromaticity to +1 in both planes332

during the optimization. The same constraints as used333

in the linear lattice optimization are again applied here334

in the 2nd stage.335

Both MA and DA are evaluated by including random336

linear gradient and skew errors in the lattices that simu-337

late typical residual beta beating (2-3%) and linear cou-338

pling (about 1%), as they are commonly determined in339

real machines after carrying out lattice calibration and340

correction using orbit-response matrix analysis. Specif-341

ically, the relative normal gradient errors with a sigma342

of 2 ⇥ 10�4 and skew gradient error of 5 ⇥ 10�4 are ap-343

plied to all quadrupoles and combined-function dipoles.344

A Gaussian distribution with 2-sigma truncation is ap-345

plied when the gradient and skew errors are populated.346

These error distributions are retained for the entire op-347

timization stage and only upon its completion, with a348

candidate lattice in hand, alternate error distributions349

are applied and it is verified that these alternate errors350

in the chosen candidate still render comparable perfor-351

mance to the originally optimized lattice.352

The initial population for this 2nd stage optimization353

is taken from the final generation of the previous linear354

optimization stage along with random sextupole gradi-355

ents initially supplied to the first generation. The behav-356

ior and convergence of MOGA can be greatly a↵ected by357

the hyperparameters of the algorithm such as probabil-358

ities and index of mutation and crossover, which deter-359

mine how much the parent and child generations di↵er360

from each other and how frequent they should be mutated361

and crossed over. We found that, for best results, di↵er-362

ent tuning of these hyperparameters are more appropri-363

ate at di↵erent stages of the lattice population evolution.364

Therefore, the optimizations are broken down into sev-365

eral independent runs, where the population generated366

at the end of one run is used as the initial population367

for the next, and the hyperparameters are re-tuned after368

each run. In the earlier runs we set higher mutation and369

crossover probabilities in order to encourage the explo-370

ration over wider ranges; later on, lower probabilities are371

e↵ective to boost convergence speed. Each run typically372

spawns 200 generations. With a typical population size373

of 5000, it usually takes about 2–3 days to complete a374

single run with 1000 computing cores on the ALSACC375

cluster, which is hosted by the LBNL Supercluster and376

has a mixture of di↵erent CPU architectures and mem-377

ory configurations [17]. Usually, several runs are required378

to achieve a fully converged Pareto front. Therefore, this379

whole optimization process for the 2nd stage typically380

takes about a week or two.381

A typical Pareto front resulting from this 2nd stage382

of lattice optimization is shown in Fig. 2. It indicates a383384
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• Training	data	for	11D	problem	can	no	longer	be	
acquired	through	systematic	sampling	of	input	space…	
• …but	do	not	want	to	make	too	many	assumptions	➔	
retain	generality	of	approach	
• Instead:	use	first	few	generations	of	MOGA	data	as	
training	data	for	deep	neural	networks	(DNNs)	
• Two	8-layer	DNNs	used	in	lieu	of	MOGA	calls	to	TRACY	
for	DA	and	MA	
• Training	2	DNNs	to	get	DA/MA	predictions	≈1%	rms	
requires	about	50k	lattices	
• Compare:	traditional	MOGA	requires	about	640	gen	
(3.2M	lattices	evaluated)	➔	8	days	on	1000-core	cluster

ML	for	Full	Linear	&	Nonlinear	Lattice	Optimization

22

Input

FC + ReLU, 128FC + ReLU, 128

FC + ReLU, 32 FC + ReLU, 64

FC + ReLU, 256

FC + ReLU, 64 FC + ReLU, 32 FC, 1

Fully-connected	(FC)	NN,	using	ReLU	as	activation	function,	#	=	node	depth

Evaluaton	Data	
N=4,874

1%	rms	predicXon	error
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• Training	data	for	11D	problem	can	no	longer	be	
acquired	through	systematic	sampling	of	input	space…	
• …but	do	not	want	to	make	too	many	assumptions	➔	
retain	generality	of	approach	
• Instead:	use	first	few	generations	of	MOGA	data	as	
training	data	for	deep	neural	networks	(DNNs)	
• Two	8-layer	DNNs	used	in	lieu	of	MOGA	calls	to	TRACY	
for	DA	and	MA	
• Training	2	DNNs	to	get	DA/MA	predictions	≈1%	rms	
requires	about	50k	lattices	
• Compare:	traditional	MOGA	requires	about	640	gen	
(3.2M	lattices	evaluated)	➔	8	days	on	1000-core	cluster

ML	for	Full	Linear	&	Nonlinear	Lattice	Optimization

23

Input

FC + ReLU, 128FC + ReLU, 128

FC + ReLU, 32 FC + ReLU, 64

FC + ReLU, 256

FC + ReLU, 64 FC + ReLU, 32 FC, 1

Fully-connected	(FC)	NN,	using	ReLU	as	activation	function,	#	=	node	depth

Evaluaton	Data	
N=4,874

1%	rms	predicXon	error
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•ML	predictions	are	not	100%	accurate	
• Training	based	on	initial	data	only	
• Initial	ML-MOGA	solutions	disagree	
with	tracking	validation	&	converged	
ML-predicted	solutions	not	entirely	
non-dominated	
•Want	to	retrain	DNNs	with	an	improved	
resampling	of	input	space	as	in	[5],	…	
• …but	here	for	a	many-dimensional	
input	space	without	making	any	
assumptions	on	smoothness	of	
distributions

But	of	course	it’s	a	bit	more	complicated…

24

[5]	A.	Edelen,	N.	Neveu,	M.	Frey,	et	al.,	PRAB	23	044601,	2020.

Original	MOGA	(converged) ML-MOGA	(converged)

Training	Data	
(First	10	Gen	MOGA)
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[5]	A.	Edelen,	N.	Neveu,	M.	Frey,	et	al.,	PRAB	23	044601,	2020.

Original	MOGA	(converged) ML-MOGA	(converged)

Training	Data	
(First	10	Gen	MOGA)

Tracking-Validated	
ML-MOGA	(rank-1)
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[5]	A.	Edelen,	N.	Neveu,	M.	Frey,	et	al.,	PRAB	23	044601,	2020.

Original	MOGA	(converged) ML-MOGA	(converged)

Tracking-Validated	
ML-MOGA	(rank-1)

Training	Data	
(First	10	Gen	MOGA)



Simon	C.	Leemann	•	Machine	Learning	Applications	for	Storage	Ring	Light	Sources	
FLS	2023,	Lucerne,	Switzerland,	Aug	27	–	Sep	1,	2023

	
	

	
	

	
	

	Lawrence Berkeley National Laboratory 
 
One Cyclotron Road / MS: XX-XXX / Berkeley, California 94720 USA / phone 510-4XX-XXXX / fax 510-4XX-XXXX 

U.R.  Namehere 
Title 
2 October 2014 

	
	
	
	 	

• Retraining	DNNs	with	tracking	validation	data	is	
computationally	inexpensive	&	makes	no	
assumptions	on	distributions	
• Retrained	DNN	is	used	for	next	run	starting	with	
inputs	from	final	gen	of	last	run	➔	Iterate	this	
ML–validation–retraining	process	until	ML-MOGA	
results	reach	the	true	Pareto-optimal	front	
• But	when	is	that?	

- How	do	we	know	our	predictions	have	become	
accurate	enough	and	our	ML-MOGA	derived	
Pareto	front	is	the	actual	Pareto	front?	
- Minimizing	no.	of	additional	required	iterations	
is	crucial	to	maintaining	large	overall	speedup

Iterative	Retraining	Improves	ML-MOGA

27

Added	data	from	
1st	validaXon	step

Evaluaton	Data	
N=5,873

1%	rms	
predicXon	error
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• Introduce	two	distance	metrics	for	input	&	
objective	space	
• Euclidean	norms	normalized	in	each	variable	➔	
single	unit-free	relative	measure	for	movement	
of	distribution	in	input/objective	space	
•Metrics	inform	us	about:	

- MOGA	can	be	considered	truly	converged	
once	 	

- when	there	is	no	more	added	benefit	from	
an	additional	retraining	iteration,	i.e.	
process	fully	converged	once	 	

•Model-independent	metrics	➔	full	automation

δi,o(m + 1) ≈ δi,o(m)

Δf → 0

Distance	Metrics	&	Convergence

28

Gen	m

Pop	size	n Input	l	of	child	j	at	gen	m Parameter	range	
for	input	l

Dimensions	of	
input	space	N
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Distance	Metrics	&	Convergence	(cont.)

29

Δδi≠0	➔	not	yet	converged

Input	δi

Δδo≈0	➔	converged

Objective	δo

Push	towards	
targets	with	

every	addiXonal	
iteraXon

Iter.	1

Iter.	8
Iter.	4

Iter.	6

Iter.	2

Objective	Space

Iterate	retraining	unXl	
DNN	predicXons	match	
tracking	validaXon

Converged
Converged
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Results

• Retraining	shows	very	quick	convergence	(6-8	iterations)	
• Once	fully	converged,	ML-MOGA	inputs	&	objectives	match	
those	of	traditional	MOGA	to	within	“noise	floor”	(MOGA	
stochastics)	
• Overall	speedup	is	roughly	a	factor	40	(incl.	training	&	re-training	effort)	
• Only	very	minor	modifications	required	to	existing	MOGA	
workflow/tools	
• Convergence	defined	in	model-independent	way	➔	can	adapt	to	
other	optimization	problems	
• Potential	to	fully	automate	entire	optimization	campaign	&	
optimize	in	parallel	from	the	start	for	many	error	seeds	is	highly	
attractive	➔	derive	truly	global	optimum

30

Iteration	1 Iteration	2 Iteration	3 Iteration	4

Iteration	5 Iteration	6 Iteration	7 Iteration	8



Simon	C.	Leemann	•	Machine	Learning	Applications	for	Storage	Ring	Light	Sources	
FLS	2023,	Lucerne,	Switzerland,	Aug	27	–	Sep	1,	2023

	
	

	
	

	
	

	Lawrence Berkeley National Laboratory 
 
One Cyclotron Road / MS: XX-XXX / Berkeley, California 94720 USA / phone 510-4XX-XXXX / fax 510-4XX-XXXX 

U.R.  Namehere 
Title 
2 October 2014 

	
	
	
	 	

Results

• Retraining	shows	very	quick	convergence	(6-8	iterations)	
• Once	fully	converged,	ML-MOGA	inputs	&	objectives	match	
those	of	traditional	MOGA	to	within	“noise	floor”	(MOGA	
stochastics)	
• Overall	speedup	is	roughly	a	factor	40	(incl.	training	&	re-training	effort)	
• Only	very	minor	modifications	required	to	existing	MOGA	
workflow/tools	
• Convergence	defined	in	model-independent	way	➔	can	adapt	to	
other	optimization	problems	
• Potential	to	fully	automate	entire	optimization	campaign	&	
optimize	in	parallel	from	the	start	for	many	error	seeds	is	highly	
attractive	➔	derive	truly	global	optimum

31

TradiXonal	MOGA	@	gen	643

ML-MOGA	converged,	rank-1

NIM-A	1050,	168192	(2023)
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QuesXons?
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