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Synchrotron light sources, arguably among the most powerful tools of modern scientific discovery,
are presently undergoing a major transformation to provide orders of magnitude higher brightness and
[ h bling the most Inth overall source stabilit

will soon be limited by achievable levels of electron beam size stability, presently on the order of several ARTICLE INFO ABSTRACT

microns, which is still 1-2 orders of magnitude larger than already demonstrated stability of source position eywords: Fourth-generation storage rings enabled by multi-bend achromat lattices are being inaugurated worldwide and
and current. Until now source size stabilization has been achieved through corrections based on a combination Synchrotron light source. ‘many more are planned for the next decade. These sources deliver stable ultra-high brightness radiation with
of static predetermined physics models and lengthy calibration measurements, periodically repeated to e e ummatched levels of anserse cohernce by it ofthei highy advanced magnti s, Optmiation
counteract drift in the accelerator and instrumentation. We now demonstrate for the first time how the Lattice design of these challenging and strongly nonlinear lattices with many degrees of freedom bounded by extensive sets

of constraints and multiple often conflicting optimization goals is highly demanding and requires application
of the most advanced numerical tools available to the community. While multi-objective genctic algorithms
have been very successful in supporting these optimization efforts, the algorithms suffer from a fundamental
limitation of their stochastic nature: an exceedingly vast number of candidate lattices, most of which eventually

Mult-objective optimization

application of machine learning allows for a physics- and model-independent stabilization of source size ‘Machine learning

relying only on previously existing instrumentation. Such feed-forward correction based on a neural network
that can be continuously online retrained achieves source size stability as low as 0.2 um (0.4%) rms, which

results in overall source s
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Introduction.—Synchrotron radiation sources, specifi-
cally third-generation storage ring light sources, have
been tremendously successful tools of scientific discov-
ery since the early 1990s [1]. As these facilities mature, a
new era of fourth-generation storage rings (4GSRs) based
on diffraction-limited storage rings (DLSRs) [2-8] is
being ushered in. These sources will increase average
brightness by 2-3 orders of magnitude while also deliv-
ering high degrees of transverse coherence, for the first
time even for x rays. High coherent flux will enable
scientists to understand material compositions and
dynamics ranging in length from microns to nanometers
and in time from minutes to nanoseconds. The most
notable and direct result of the new beam properties will
impact two techniques in particular. Ptychography [9]
will take direct advantage of an increase in coherent flux
to decrease measurement times by orders of magnitude.
This will allow for the collection of complex 3D chemical
maps with unprecedented resolution and will lead to
deeper understanding of electrochemical systems such as
batteries and fuel cells. The measurement of dynamics
and kinetics to study chemical systems is another cat-
egory that will be directly impacted by the new sources.
An emerging technique to study this is x-ray photon
correlation spectroscopy (XPCS) [10]. Ptychography as
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bility approaching the subpercent noise floor of the mos

sensitive experiments

well as XPCS rely heavily on high beam stability over
extended periods of time.

To large extent the success of storage ring light sources
lies in their stability, resulting in constant position, angle,
and intensity of radiation delivered at a tunable wavelength
with narrow width. In order to maintain constant intensity,
a combination of top-off injection (maintaining constant
beam current) [11,12] and precise control over source
position and size is required. In third-generation light sources
(3GLSs) the latter usually called for transverse beam size
stability within 10% of the rms electron beam size [13,14].
Now, however, first experiments at these sources are starting
to show limitations arising from such levels of source size
control and it is evident that DLSRs, operating at much
smaller source sizes, will call for significantly tighter control
over source size stability in order to exploit ultrahigh
brightness and transverse coherence.

S i effort and its limitations.—
A typical example for the aforementioned source size
stabilization challenge is shown in Fig. he vertical
electron beam size as measured at diagnostic beam line
3.1 [15] of Lawrence Berkeley National Laboratory’s
Advanced Light Source (ALS) is displayed during a typical
user run. While the horizontal beam size remains constant
(spikes observed in both planes at the same time are

are rejected, has to be fully evaluated. This comes at immense computational cost and thus drives excessive
runtime despite use of large supercomputing clusters. We therefore propose to employ deep learning techniques
and iterative retraining of neural networks to massively accelerate such lattice evaluation, thereby allowing
lattice optimization to rely on far fewer a priori assumptions, open up to larger search ranges, and include right
from the start and in parallel multiple error distributions to find truly global optima, all while completing a
full optimization campaign i weeks rather than months. In this paper we present the neural network designs,
the deep learning approach, iterative retraining procedures, and demonstrate how these machine learning
techniques can be incorporated into existing state-of-the-art optimization workflows with only minimal changes
applied to the optimization pipeline itself and none at all to the employed tracking codes.

1. Introduction

Storage-ring based synchrotron light sources around the world are
presently undergoing a massive transformation. Pioneered in MAX
IV [1], the multi-bend achromat (MBA) [2] lattice has ushered in the
era of 4th-generation storage rings (4GSRs): a class of ring-based light
sources capable of delivering stable ultra-high brightness diffraction-
limited synchrotron radiation with a high degree of transverse co-
herence simultaneously to dozens of beamlines. The MBA lattice—
presently foreseen by almost every new source and upgrade project—is
composed of many small-aperture magnets with high field gradients
capable of providing the strong focusing necessary to achieve ultra-
low emittance. This strong focusing reduces the dispersion and drives
the natural chromaticity in the lattice. Combined, this calls for very
strong sextupoles leading to highly nonlinear lattices exhibiting limited
dynamic aperture (DA) and momentum aperture (MA) compared to
those of 3rd-generation light sources. Apart from the many engineering
difficulties in the design of a 4GSR, the beam physics and lattice
optimization itself present a significant challenge due to the large
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number of magnets that need to be tuned in a multi-variate and multi-
objective optimization process. Apart from lattice design expertise, this
usually calls for the most advanced numerical and analytical resources
available to the community.

Multi-objective genetic algorithms (MOGA) [3] have proven to be
one of the most successful and commonly used tools for the optimiza-
tion of modern light source lattices [4-6]. Multiple variants of MOGA
are available, among which the Pareto-based algorithm NSGA-IL is the
most popular [7,8]. Optimization of an MBA lattice with MOGA is
highly non-trivial since ultra-high brightness, lifetime, and injection
efficiency are usually in direct competition and a suitable trade-off
needs to be carefully established, taking into account an exceedingly
large number of constraints. While MOGA is extremely well equipped to
undertake such optimization, it suffers from the fundamental limitation
that—as a stochastic process—it requires a vast number of candidate
lattices to be evaluated. Nonlinear lattice evaluation based on many-
tun particle tracking is very CPU-expensive and nevertheless, almost
all evaluated lattices are eventually rejected by MOGA. This weakness,
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Part 1: ML Improving Performance
of an Operational Storage Ring



Stabilizing Electron & Photon Beams

Courtesy: C. Steier, PAC'09

e State-of-the-art storage ring light sources achieve excellent
stability in terms of beam current (top-off injection) &
beam position/angle (orbit feedbacks)
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Stabilizing Electron & Photon Beams

EPAC 2004, MOPKFO71, p.479
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Stabilizing Electron & Photon Beams

51t Vertical beam size @ BL3.1 — o

49

e State-of-the-art storage ring light sources achieve excellent
stability in terms of beam current (top-off injection) &
beam position/angle (orbit feedbacks)
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e |D effects are countered with extensive correction efforts
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* Yet in spite of all these correction efforts, beam size is still ALS Diagnostic Beamline 3.1

perturbed by insertion device (ID) config changes
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Stabilizing Electron & Photon Beams
STXM @ ALS Beamline 5.3.2.2

e State-of-the-art storage ring light sources achieve excellent &
stability in terms of beam current (top-off injection) &
beam position/angle (orbit feedbacks)
* |D effects are countered with extensive correction efforts oof s
* ID feed forwards rely on look-up tables that require =
dedicated machine time and periodic re-recording ___ During user ops
* Yet in spite of all these correction efforts, beam size is still T
perturbed by insertion device (ID) config changes
 Resulting level of performance has started to become a

limitation at most demanding experiments .

300 |

e Expected to become a serious issue in 4th-generation
sources, eg. DLSRs with STXM, XPCS, ptychography, etc.

400 - =

No ID motion
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Machine Learning to the Rescue

* Machine Learning (ML) can can model highly nonlinear processes, is
extremely flexible

* ML can exploit large amounts of data that are already collected during
routine operations - “training”
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Machine Learning to the Rescue

* Machine Learning (ML) can can model highly nonlinear processes, is
extremely flexible

* ML can exploit large amounts of data that are already collected during
routine operations - “training”

* Once trained, neural network (NN) provides predictions for vertical 7
beam size changes resulting from ID config changes & magnetic | S
corrections | SN0 W - WAV SN W S

* Magnetic corrections implemented as excitation change to the 32
skew quadrupoles driving the vertical dispersion wave T
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Machine Learning to the Rescue

* Machine Learning (ML) can can model highly nonlinear processes, is
extremely flexible

* ML can exploit large amounts of data that are already collected during
routine operations - “training”

* Once trained, neural network (NN) provides predictions for vertical

beam size changes resulting from ID config changes & magnetic H
corrections 1 SN0 VYN - WA VY ML W S
- Magnetic corrections implemented as excitation change to the 32 | | "V
skew quadrupoles driving the vertical dispersion wave e

* These NN predictions can serve as a dynamic lookup

* |If such a lookup is incorporated into the accelerator control system as a
feed forward (FF), we can stabilize the electron beam source size over . )
prolonged periods of time (online retraining exploited to mitigate
machine drift)

Prediction
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Simulating NN-based ID FF During Physics Shift

Evaluation

e Scanned various ID
configurations and skew

excitations (DWP) to 7.5 um p-p (15%)
! . - 0
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data L i 1
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NN-based ID FF Off vs. On During User Ops

* During user ops NN-based
ID FF running at =3 Hz in
addition to of all other
conventional FBs and FFs

e Observed roughly 5-fold
reduction of V rms source
size motion at diagnostics
BL

e Online retraining of the NN
(using data acquired with
FF engaged during user
ops) = capture ID
configurations not
observed during initial
training
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Stabilization Confirmed at Most Sensitive Experiment
STXM @ ALS Beamline 5.3.2.2
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o 3rd-gen SRs 4th-gen SRs
Introduction: The Problem
MBA
* 4th-generation storage rings (4GSRs) leverage MBA lattices
to render ultra-high brightness with large coherent fraction %00 o 500 ~5%00 oo 500

Courtesy: Dave Robin
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500

Introduction: The Problem il 4-gen SRs

y [um]
o

* 4th-generation storage rings (4GSRs) leverage MBA lattices
to render ultra-high brightness with large coherent fraction 500 ~5%00

0 0 500
X [um] x [um]
* MBA lattices are very challenging: dense & exploit very

Courtesy: Dave Robin
strong focusing = drives strong chromatic & higher-order g gkl
corrections

* Solutions often highly nonlinear & involve many degrees of
freedom (DoF) » demanding optimization
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Introduction: The Problem

* 4th-generation storage rings (4GSRs) leverage MBA lattices
to render ultra-high brightness with large coherent fraction

* MBA lattices are very challenging: dense & exploit very
strong focusing = drives strong chromatic & higher-order
corrections

* Solutions often highly nonlinear & involve many degrees of
freedom (DoF) » demanding optimization

* Multi-objective genetic algorithms (MOGA) are highly
successful at such optimization & have become tool of
choice

 However, stochastic nature is inherent weakness

* Do not want to artificially limit DoF, search ranges, or make
many initial assumptions about attractive solutions = so
what can we do?

”
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Improving MOGA: ML to the Rescue

* ML can be employed to render neural networks (NNs) - surrogate
models used in lieu of computationally expensive evaluation

e Lattice candidate evaluation becomes near instantaneous

e Aim to speed up MOGA without modifying MOGA/tracking tools or
existing workflows & without sacrificing physics fidelity

* Previous attempts [1-3] have focused on various aspects, but we
set out with a different emphasis:

- Direct optimization of relevant physics quantities (o, DA, MA)

- Combined linear/nonlinear optimization involving all free
parameters (quadrupoles & sextupoles)

[1] M. KranjCevié, B. Riemann, A. Adelmann, A. Streun, PRAB 24 014601, 2021.
[2] Y. Li, W. Cheng, L. Yu, R. Rainer, PRAB 21 054601, 2018.
[3]J. Wan, P. Chu, Y. Jiao, PRAB 23 081601, 2020.
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ALS-U as a Test Case

» ALS-U storage ring (SR) calls for a challenging 9BA to

achieve =75 pm rad (round beam) at 2 GeV in 200-m tunnel

> diffraction limited @ 1.2 keV (1 nm)

* 9BA lattice becomes very dense & has strained optics

[
é} ADVANCED LIGHTSOURCE ATA P)))
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ALS-U as a Test Case

» ALS-U storage ring (SR) calls for a challenging 9BA to

achieve =75 pm rad (round beam) at 2 GeV in 200-m tunnel
> diffraction limited @ 1.2 keV (1 nm)

* 9BA lattice becomes very dense & has strained optics
* MOGA (@ 2nd stage): 9 quads, 4 sextupoles » 11 free knobs

» =15 magnet/lattice constraints on top of quadrupole
ranges (from 1st stage)

» Objectives: €, MA, and on-momentum DA (total diff. rate)

Natural emittance €0 < 155 pmrad

Maximum beta Be,y < 30m
Maximum dispersion Ne < 15cm
Fractional tunes 0.1 <vgy<04
Dispersion at center of straight [7:] < 1mm
Beta at center of straight Im < B3, <b5m
Beta in central arc bends (B3) ﬂf’i’, <4m
Fractional tune difference |ve — vy| < 0.01
Chromatic sextupole strength (SF, SD) b2 < 900m?
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ALS-U as a Test Case

 ALS-U storage ring (SR) calls for a challenging 9BA to
achieve =75 pm rad (round beam) at 2 GeV in 200-m tunnel
> diffraction limited @ 1.2 keV (1 nm)

* 9BA lattice becomes very dense & has strained optics
* MOGA (@ 2nd stage): 9 quads, 4 sextupoles » 11 free knobs

» =15 magnet/lattice constraints on top of quadrupole
ranges (from 1st stage)

» Objectives: €, MA, and on-momentum DA (total diff. rate)
* Highly staged MOGA approach resulted in

- +1 mm DA (on-axis swap-out injection with AR)

- =1 hr lifetime (with 3HCs)
- ...but required months of CPU time on large clusters
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ML for Full Linear & Nonlinear Lattice Optimization

* Training data for 11D problem can no longer be

acquired through systematic sampling of input space...

e ...but do not want to make too many assumptions -
retain generality of approach

* Instead: use first few generations of MOGA data as
training data for deep neural networks (DNNs)

e Two 8-layer DNNs used in lieu of MOGA calls to TRACY
for DA and MA
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ML for Full Linear & Nonlinear Lattice Optimization

* Training data for 11D problem can no longer be
acquired through systematic sampling of input space...

e ...but do not want to make too many assumptions -
retain generality of approach

* Instead: use first few generations of MOGA data as
training data for deep neural networks (DNNs)

e Two 8-layer DNNs used in lieu of MOGA calls to TRACY
for DA and MA

* Training 2 DNNs to get DA/MA predictions =1% rms
requires about 50k lattices

e Compare: traditional MOGA requires about 640 gen
(3.2M lattices evaluated) » 8 days on 1000-core cluster

[
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But of course it’s a bit more complicated...

* ML predictions are not 100% accurate

* Training based on initial data only
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But of course it’s a bit more complicated...
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But of course it’s a bit more complicated...

* ML predictions are not 100% accurate
* Training based on initial data only

* Initial ML-MOGA solutions disagree
with tracking validation & converged
ML-predicted solutions not entirely

non-dominated

* Want to retrain DNNs with an improved
resampling of input space as in [5], ...

* ...but here for a many-dimensional
input space without making any
assumptions on smoothness of

distributions

[5] A. Edelen, N. Neveu, M. Frey, et al., PRAB 23 044601, 2020.
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Iterative Retraining Improves ML-MOGA

Evaluation Data

400 -

 Retraining DNNs with tracking validation data is N=5873
computationally inexpensive & makes no

assumptions on distributions

300 1% rms
prediction error

Frequency

* Retrained DNN is used for next run starting with —0.0057 o
inputs from final gen of last run = Iterate this o “0:6002  0.0000  0.0002 ~0.0604

MA Prediction Error [ ]

ML—validation—retraining process until ML-MOGA — —0.010-
results reach the true Pareto-optimal front <
e But when is that? i —0.015;
- How do we know our predictions have become §
accurate enough and our ML-MOGA derived £ -0.020]
Pareto front is the actual Pareto front? .Added data from
- Minimizing no. of additional required iterations —0.0251 1st validation step

is crucial to maintaining large overall speedup
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Distance Metrics & Convergence

* Introduce two distance metrics for input &
objective space

* Euclidean norms normalized in each variable =»
single unit-free relative measure for movement

of distribution in input/objective space
* Metrics inform us about:
- MOGA can be considered truly converged
once 6; ,(m + 1) = o; ,(m)

- when there is no more added benefit from
an additional retraining iteration, i.e.

process fully converged once Af — ()

* Model-independent metrics » full automation
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Distance Metrics & Convergence (cont.)
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Results

* Retraining shows very quick convergence (6-8 iterations)
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Results

* Retraining shows very quick convergence (6-8 iterations)

e Once fully converged, ML-MOGA inputs & objectives match
those of traditional MOGA to within “noise floor” (MOGA
stochastics)

* Overall speedup is roughly a factor 40 (incl. training & re-training effort)

* Only very minor modifications required to existing MOGA
workflow/tools

* Convergence defined in model-independent way -» can adapt to
other optimization problems

 Potential to fully automate entire optimization campaign &
optimize in parallel from the start for many error seeds is highly
attractive » derive truly global optimum
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Thank You!

Questions?
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