

Free-electron-light interactions in nanophotonics

Charles Roques-Carmes^{1,2}

¹ Ginzton Laboratories, Stanford University

² Department of Physics, MIT

67th ICFA Beam Dynamics Workshop on Future Light Sources

August 28th, 2023

Nanophotonics = molding the flow of light at the nanoscale

...even with high-energy particles!

Nanophotonic structures...

...and light-matter interactions...

Structural design at the nanoscale

3-D

2-D

1-D

Image sources: Capasso (Harvard), Soljačić (MIT), Joannopoulos (MIT), Johnson (MIT), Polman (AMOLF), Vuckovic (Stanford), Vahala (Caltech), Englund (MIT) research groups, and many others.

 $\nabla_t \times f(x,y)$

f(x,y)

f(x, y)dxdy

4.9 [mm]

4

90°

Controlling light-matter interactions

Emissivity

Image sources: Capasso (Harvard), Soljačić (MIT), Polman (AMOLF), Vuckovic (Stanford), Vahala (Caltech), Englund (MIT), Altug (EPFL), Quidant (ETH) research groups, and **many others.**

Nanophotonics for light-matter interactions with high-energy particles

Combining electron microscopy resolution with photonic control of light-matter interaction

See review: Roques-Carmes et al., Applied Physics Reviews (2023)

The next frontier: strong interactions between electron and other quantum particles

Single-electron-single-photon interactions

The key: strong interactions between electrons and photons

Record for reported value of $g_{\rm Qu}$ ~ 1

Adiv, et al., Kaminer group, PRX (2023)

Feist et al., Ropers and Kippenberg groups, Science (2022)

Key questions: What are fundamental limits to electron-light interactions? What nanophotonic structures can enhance electron-light interactions?

Talk overview

Free-electron-light interactions

Roques-Carmes et al., Applied Physics Reviews (2023)

Yang, Massuda, Roques-Carmes, et al., Nature Physics (2018)

Roques-Carmes, et al. Nature Communications (2019)

Massuda, Roques-Carmes, et al., ACS Photonics (2018)

Controlling electronbeam radiation with nanophotonics

Enhancing electron-beam radiation with photonic flatbands

Yang*, Roques-Carmes*, Nature (2023)

Talk overview

Free-electron-light interactions

Roques-Carmes et al., Applied Physics Reviews (2023)

Yang, Massuda, Roques-Carmes, et al., Nature Physics (2018)

Roques-Carmes, et al. Nature Communications (2019)

Massuda, Roques-Carmes, et al., ACS Photonics (2018)

Controlling electronbeam radiation with nanophotonics

Enhancing electron-beam radiation with photonic flatbands

Yang*, Roques-Carmes*, Nature (2023)

A Branch

How do free electrons emit light?

Controlling free-electron radiation with nanophotonic structures

Roques-Carmes et al., Applied Physics Reviews (2023)

Gold-coated silicon gratings

Glancing interaction zone

$$\frac{dU}{d\omega dl} = \frac{q^2}{8\pi^2 \varepsilon_0} \sum_{m,\mathbf{G}} \int_{\partial S} dk \frac{|\mathbf{c}_{m,\mathbf{k}}^{\mathbf{G}}(\boldsymbol{\omega}) \cdot \hat{r}_{\parallel}|^2}{|\nabla_{\mathbf{k}_{\perp}} \boldsymbol{\omega}_{m,\mathbf{k}}|}$$

Band structure engineering to enhance emission

Talk overview

Free-electron-light interactions

Roques-Carmes et al., Applied Physics Reviews (2023) Yang, Massuda, **Roques-Carmes**, et al., *Nature Physics* (2018)

Roques-Carmes, et al. Nature Communications (2019)

Massuda, Roques-Carmes, et al., ACS Photonics (2018)

Controlling electronbeam radiation with nanophotonics

Enhancing electron-beam radiation with photonic flatbands

Yang*, Roques-Carmes*, Nature (2023)

General idea: <u>engineer nanophotonic</u> <u>structures to enhance and tailor emission</u> <u>from free electrons (and other types of high-</u> <u>energy particles).</u>

Spectrally-resolved cathodoluminescence in a scanning electron microscope

Roques-Carmes*, Rivera*, et al. *Science* (2022) Yang*, Roques-Carmes*, et al., *Nature* (2023) Yang, Massuda, Roques-Carmes, et al., *Nature Physics* (2018) Roques-Carmes, et al. *Nature Communications* (2019) Massuda, Roques-Carmes, et al., *ACS Photonics* (2018)

Our experimental setup

See also the works from (among others)

Fabrizio Carbone (TEM) Ido Kaminer (TEM) Claus Ropers/Tobias Kippenberg (TEM) Ady Arie (TEM) Peter Hommelhoff (TEM) ACHIP collaboration (TEM) Michael Krueger (TEM) Giovanni Vanacore (TEM) June Lau (TEM) Jo Verbeeck (TEM) Attolight (TEM) Mathieu Kociak (SEM/TEM) Sophie Meuret (SEM/TEM)

Albert Polman/Toon Coenen/DELMIC (SEM) Karl Berggren/Donnie Keathley (SEM) Nikolai Zheludev (SEM) Yidong Huang (SEM) Jennifer Dionne (SEM) Nahid Talebi (SEM)

Our experimental setup

In vacuum:

- Relocated SEI detector
- XYZ motorized objective stage
- Sample tilt stage
- Optical in/out coupling

Tunable emission from silicon nanogratings

- Low-energy electrons (\rightarrow 2keV) ٠
- Tunable radiation spanning silicon's transparency window

Maximal emission from electron-light interactions?

Generalizing fundamental bounds in electromagnetism to free-electron radiation. [See work by Owen Miller's group]

Bound states in the continuum to boost free-electron emission

Yang, Massuda, **Roques-Carmes**, et al., *Nature Physics* (2018) **Roques-Carmes**, et al., Nature Communications (2019)

Talk overview

Free-electron-light interactions

Roques-Carmes et al., Applied Physics Reviews (2023)

Yang, Massuda, Roques-Carmes, et al., Nature Physics (2018)

Roques-Carmes, et al. Nature Communications (2019)

Massuda, Roques-Carmes, et al., ACS Photonics (2018)

Controlling electronbeam radiation with nanophotonics

Enhancing electron-beam radiation with photonic flatbands

Yang*, Roques-Carmes*, Nature (2023)

"Total" phase-matching

Design + optical measurements

Sample (2D PhC)

Yang*, **Roques-Carmes***, et al., *Nature* (2023)

Free-electron radiation enhancement (simulation)

Electron-beam measurement confirmation

Electron-beam measurement

100-fold radiation enhancement on vs. off flatband [in contrast with SPR] **30x stronger** than SPR from 1D grating

Can flatbands introduce a new regime of electron-light-matter interactions?

Fully integrated electronbeam-driven light sources

Quantum electron-light interactions

Original proposal : Dahan, Baranes, et al., Kaminer group, PRX (2023)

Free-electron-light interactions in nanophotonics

• **Modelling**, **tailoring**, and **enhancing** coherent electron-light interactions with nanophotonic structures

Acknowledgments

MIT:

Prof. Marin Soljačić Prof. Karl Berggren Prof. Dirk Englund Prof. John Joannopoulos Prof. Steven Johnson Dr. Steven Kooi Dr. Donnie Keathley Dr. Nicholas Rivera Dr. Yi Yang Dr. Yannick Salamin

Technion:

Prof. Ido Kaminer Prof. Y. Bekenstein Dr. Roman Schütz Avner Shultzman

Tel Aviv-University: Prof. Ady Arie

EPFL:

Dr. Jonathan Dong

School of Engineering and Applied Sciences

Stanford University:

Center for Nanoscale Systems

Prof. Shanhui Fan Prof. Jelena Vuckovic Dr. Aviv Karnieli

Penn State:

Prof. Mikael Rechtsman Marius Jürgensen

Harvard: Prof. Eric Mazur

Free-electron-light interactions in nanophotonics

Roques-Carmes et al., Applied Physics Reviews (2023)

Yang, Massuda, Roques-Carmes, et al., Nature Physics (2018)

Roques-Carmes, et al. *Nature Communications* (2019) Massuda, **Roques-Carmes**, et al., *ACS Photonics* (2018) Yang*, Roques-Carmes*, Nature (2023)

Charles Roques-Carmes

67th ICFA Beam Dynamics Workshop on Future Light Sources