Author: Yu, J.B.
Paper Title Page
WE4P33 Design of a 166.6 MHz HOM Damped Copper Cavity for the Southern Advanced Photon Source 207
 
  • J.Y. Zhu, X. Li, Z.J. Lu
    IHEP, Beijing, People’s Republic of China
  • J.B. Yu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  Funding: This work was supported by the National Natural Science Foundation of China (12205168).
The Southern Advanced Photon Source (SAPS) aims to achieve ultra-low emittances and is expected to adopt low-frequency cavities (< 200 MHz) to accommodates on-axis injection. This paper focuses on the design of a 166.6 MHz HOM-damped normal conducting (NC) cavity for the SAPS. We propose a novel approach to achieve efficient HOM damping by optimizing the lowest frequency HOM and implementing a beam-line absorber in a coaxial resonant NC cavity. Notably, unlike beam-line absorbers for conventional NC cavities, the presence of a large beam tube in a coaxial resonant cavity does not affect the accelerating performance. This enables effective HOM damping while maintaining a high shunt impedance in a NC cavity. The numerical simulation results show that a compact copper cavity with effective HOM damping and excellent RF properties has been achieved.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P33  
About • Received ※ 23 August 2023 — Revised ※ 30 August 2023 — Accepted ※ 01 September 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)