Author: Yamaguchi, T.
Paper Title Page
MO3B3 Bunch-lengthening RF System Using Active Normal-conducting Cavities 18
 
  • N. Yamamoto, D. Naito, S. Sakanaka, T. Yamaguchi
    KEK, Ibaraki, Japan
  • A. Gamelin, P. Marchand
    SOLEIL, Gif-sur-Yvette, France
 
  Bunch lengthening using a double RF system (fundamental + harmonic cavities) is essential in preserving the extremely low emittance in fourth and future generation synchrotron light rings. Recent studies have revealed that, in many cases, unstable beam motions, as so-called "mode-0" and "periodic transient beam loading" instabilities, prevent from reaching the optimum bunch lengthening condition with low and high beam current, respectively, even in symmetric filling patterns. While reducing the R/Q is beneficial for the latter, it will worsen the former. To achieve an efficient bunch lengthening system, we proposed a promising solution based on a powered TM020-type harmonic cavity with RF feedbacks (RF-FBs)*, as reported at FLS2018. Based on this concept, we are developing both fundamental and harmonic cavities using the TM020 resonant mode**, a kicker cavity having a bandwidth >5MHz***, bunch-phase monitor (BPhM) and RF-FBs. In this presentation, we describe our overall bunch lengthening system including cavity and BPhM designs. We also present particle tracking simulation results demonstrating that the bunch lengthening limitations can be alleviated by means of direct RF-FBs****.
* N. Yamamoto et al., PRAB 21, 012001, 2018.
** T. Yamaguchi et al., accepted in NIM A.
*** D. Naito et al, IPAC2021, MOPSB331, 2021.
**** N. Yamamoto et al., IPAC23, WEPL161, 2023.
 
slides icon Slides MO3B3 [2.655 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-MO3B3  
About • Received ※ 22 August 2023 — Revised ※ 23 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)