Paper | Title | Page |
---|---|---|
WE2A4 |
Scaling of Beam Collective Effects with Bunch Charge in the CompactLight Free-electron Laser | |
|
||
The CompactLight European consortium is designing a state-of-the-art X-ray free-electron laser driven by radiofrequency X-band technology. Rooted in experimental data on photo-injector performance in the recent literature, this study estimates analytically and numerically the performance of the CompactLight delivery system for bunch charges in the range 75-300 pC. Space-charge forces in the injector, linac transverse wakefield, and coherent synchrotron radiation in bunch compressors are all taken into account. The study confirms efficient lasing in the soft X-rays regime with pulse energies up to hundreds of microjoules at repetition rates as high as 1 kHz. | ||
![]() |
Slides WE2A4 [1.777 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TH4A2 | A Compact Inverse Compton Scattering Source Based on X-band Technology and Cavity-enhanced High Average Power Ultrafast Lasers | 257 |
|
||
A high-pulse-current photoinjector followed by a short high-gradient X-band linac and a Fabry-Pérot enhancement cavity are considered as a driver for a compact Inverse Compton Scattering (ICS) source. Using a high-power ultra-short pulse laser operating in burst mode in a Fabry-Pérot enhancement cavity, we show that outcoming photons with a total flux over 1013 and energies in the MeV range are achievable. The resulting high-intensity and high-energy photons allow various applications, including cancer therapy, tomography, and nuclear material detection. A preliminary conceptual design of such a compact ICS source and simulations of the expected performance are presented. | ||
![]() |
Slides TH4A2 [2.962 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-FLS2023-TH4A2 | |
About • | Received ※ 22 August 2023 — Revised ※ 26 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |