Author: Mercado, R.
Paper Title Page
WE4P36 The Cryogenic Undulator Upgrade Programme at Diamond Light Source 211
 
  • Z. Patel, W. Cheng, A. George, S.H. Hale, R. Mercado, A. Ramezani Moghaddam, M. Reeves, G. Sharma, S. Tripathi
    DLS, Oxfordshire, United Kingdom
  • M.V. Marziani
    University of Cape Town, Cape Town, South Africa
 
  Diamond Light Source has installed four 2 m long, 17.6 mm period Cryogenic Permanent Magnet Undulators (CPMUs) as upgrades for crystallography beamlines since 2020, with two more planned within the next year. The CPMUs provide 2 - 3 times more brightness and 2 - 4 times more flux than the pure permanent magnet (PPM) devices they are replacing. They have been designed, built, and measured in-house. All four have a 4 mm minimum operating gap and are almost identical in their construction: the main difference being an increase in the number of in-vacuum magnet beam support points from four to five, between CPMU-1 and CPMUs 2 - 4, to better facilitate shimming, particularly at cold temperatures. The ability to shim at cryogenic temperatures necessitated the development of an in-vacuum measurement system. The details of the measurement system will be presented alongside the mechanical and cryogenic design of the undulators; including issues with the magnet foils, and the shimming procedures and tools used to reach the tight magnetic specifications at room temperature and at 77 K.  
poster icon Poster WE4P36 [1.656 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-FLS2023-WE4P36  
About • Received ※ 23 August 2023 — Revised ※ 29 August 2023 — Accepted ※ 31 August 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)